Talks on Manures
by Joseph Harris
Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse

"The superphosphate of lime was made on purpose for these experiments, and was a pure mineral manure of superior quality, made from calcined bones; it cost about 2-1/2 cents per pound. The sulphate of ammonia was a good, commercial article, obtained from London, at a cost of about seven cents per pound. The ashes were made from beech and hard maple (Acer saccharinum) wood, and were sifted through a fine sieve before being weighed. The guano was the best Peruvian, costing about three cents per pound. It was crushed and sifted before using. In sowing the ashes on plot 7, an error occurred in their application, and for the purpose of checking the result, it was deemed advisable to repeat the experiment on plot 10.

"On plot 5, with 300 lbs. of superphosphate of lime per acre, the plants came up first, and exhibited a healthy, dark-green appearance, which they retained for some time. This result was not anticipated, though it is well known that superphosphate of lime has the effect of stimulating the germination of turnip-seed, and the early growth of the plants to an astonishing degree; yet, as it has no such effect on wheat, it appeared probable that it would not produce this effect on Indian corn, which, in chemical composition, is very similar to wheat. The result shows how uncertain are all speculations in regard to the manurial requirements of plants. This immediate effect of superphosphate of lime on corn was so marked, that the men (who were, at the time of planting, somewhat inclined to be skeptical, in regard to the value of such small doses of manure), declared that 'superphosphate beats all creation for corn.' The difference in favor of superphosphate, at the time of hoeing, was very perceptible, even at some distance.

"Although every precaution was taken that was deemed necessary, to prevent the manures from mixing in the hill, or from injuring the seed, yet, it was found, that those plots dressed with ashes and guano, or with ashes and sulphate of ammonia, were injured to some extent. Shortly after the corn was planted, heavy rain set in, and washed the sulphate of ammonia and guano, down into the ashes, and mutual decomposition took place, with more or less loss of ammonia. In addition to this loss of ammonia, these manures came up to the surface of the ground in the form of an excrescence, so hard that the plants could with difficulty penetrate through it.

"It will be seen, by examining the table, that although the superphosphate of lime had a good effect during the early stages of the growth of the plants, yet the increase of ears of corn in the end did not come up to these early indications. On plot 5, with 300 lbs. of superphosphate of lime per acre, the yield is precisely the same as on plot 2, with 100 lbs. of plaster (sulphate of lime), per acre. Now, superphosphate of lime is composed necessarily of soluble phosphate of lime and plaster, or sulphate of lime, formed from a combination of the sulphuric acid, employed in the manufacture of superphosphate, with the lime of the bones. In the 300 lbs. of superphosphate of lime, sown on plot 5, there would be about 100 lbs. of plaster; and as the effect of this dressing is no greater than was obtained from the 100 lbs. of plaster, sown on plot 2, it follows, that the good effect of the superphosphate of lime was due to the plaster that it contained.

"Again, on plot 4, with 150 lbs. of sulphate of ammonia per acre, we have 90 bushels of ears of sound corn, and 15 bushels of ears of soft corn, ('nubbins,') per acre; or a total increase over the plot without manure, of 38 bushels. Now, the sulphate of ammonia contains no phosphate of lime, and the fact that such a manure gives a considerable increase of crop, confirms the conclusion we have arrived at, from a comparison of the results on plots 2 and 5; that the increase from the superphosphate of lime, is not due to the phosphate of lime which it contains, unless we are to conclude that the sulphate of ammonia rendered the phosphate of lime in the soil more readily soluble, and thus furnished an increased quantity in an available form for assimilation by the plants—a conclusion, which the results with superphosphate alone, on plot 5, and with superphosphate and sulphate of ammonia, combined, on plot 6, do not sustain.

"On plot 12, half the quantity of sulphate of ammonia, was used as on plot 4, and the increase is a little more than half what it is where double the quantity was used. Again, on plot 13, 200 lbs. of Peruvian guano per acre, gives nearly as great an increase of sound corn, as the 150 lbs. of sulphate of ammonia. Now, 200 lbs. of Peruvian guano contains nearly as much ammonia as 150 lbs. sulphate of ammonia, and the increase in both cases is evidently due to the ammonia of these manures. The 200 lbs. of Peruvian guano, contained about 50 lbs. of phosphate of lime; but as the sulphate of ammonia, which contains no phosphate of lime, gives as great an increase as the guano, it follows, that the phosphate of lime in the guano, had little, if any effect; a result precisely similar to that obtained with superphosphate of lime.

"We may conclude, therefore, that on this soil, which has never been manured, and which has been cultivated for many years with the Ceralia—or, in other words, with crops which remove a large quantity of phosphate of lime from the soil—the phosphate of lime, relatively to the ammonia, is not deficient. If such was not the case, an application of soluble phosphate of lime would have given an increase of crop, which we have shown was not the case in any one of these experiments.

"Plot 10, with 400 lbs. of unleached wood-ashes per acre, produces the same quantity of sound corn, with an extra bushel of 'nubbins' per acre, as plot 1, without any manure at all; ashes, therefore, applied alone, may be said to have had no effect whatever. On plot 3, 400 lbs. of ashes, and 100 lbs. of plaster, give the same total number of bushels per acre, as plot 2, with 100 lbs. of plaster alone. Plot 8, with 400 lbs. ashes, and 150 lbs. of sulphate of ammonia, yields three bushels of sound corn, and five bushels of 'nubbins' per acre, less than plot 4, with 150 lbs. sulphate of ammonia alone. This result may be ascribed to the fact previously alluded to—the ashes dissipated some of the ammonia.

"Plot 11, with 100 lbs. of plaster, 400 lbs. ashes, 300 lbs. of superphosphate of lime, and 200 lbs. Peruvian guano (which contains about as much ammonia as 150 lbs. sulphate of ammonia), produced precisely the same number of total bushels per acre, as plot 4, with 150 lbs. sulphate of ammonia alone, and but 4 bushels more per acre, than plot 13, with 200 lbs. Peruvian guano alone. It is evident, from these results, that neither ashes nor phosphates had much effect on Indian corn, on this impoverished soil. Plot 14 received the largest dressing of ammonia (500 lbs. Peruvian guano), and produced much the largest crop; though the increase is not so great in proportion to the guano, as where smaller quantities were used.

"The manure which produced the most profitable result, was the 100 lbs. of plaster, on plot 2. The 200 lbs. of Peruvian guano, on plot 13, and which cost about $6, gave an increase of 14 bushels of shelled corn, and 6 bushels of 'nubbins.' This will pay at the present price of corn in Rochester, although the profit is not very great. The superphosphate of lime, although a very superior article, and estimated at cost price, in no case paid for itself. The same is true of the ashes.

"But the object of the experiment was not so much to ascertain what manures will pay, but to ascertain, if possible, what constituents of manures are required, in greatest quantity, for the maximum growth of corn. * * Hitherto, no experiments have been made in this country, on Indian corn, that afforded any certain information on this point. Indeed, we believe no satisfactory experiments have been made on Indian corn, in any country, that throw any definite light on this interesting and important question. A few years ago, Mr. Lawes made similar experiments to those given above, on his farm, at Rothamsted, England; but owing to the coolness of the English climate, the crop did not arrive at maturity.

"Numerous experiments have been made in this country, with guano and superphosphate of lime; but the superphosphates used were commercial articles, containing more or less ammonia, and if they are of any benefit to those crops to which they are applied, it is a matter of uncertainty whether the beneficial effect of the application is due to the soluble phosphate of lime, or to the ammonia. On the other hand, guano contains both ammonia and phosphate; and we are equally at a loss to determine, whether the effect is attributable to the ammonia or phosphate, or both. In order, therefore, to determine satisfactorily, which of the several ingredients of plants is required in greatest proportion, for the maximum growth of any particular crop, we must apply these ingredients separately, or in such definite compounds, as will enable us to determine to what particular element or compounds the beneficial effect is to be ascribed. It was for this reason, that sulphate of ammonia, and a purely mineral superphosphate of lime, were used in the above experiments. No one would think of using sulphate of ammonia at its price, [sulphate of ammonia is now cheaper, while Peruvian guano is more costly and less rich in ammonia], as an ordinary manure, for the reason, that the same quantity of ammonia can be obtained in other substances, such as barnyard-manure, Peruvian guano, etc., at a much cheaper rate. But these manures contain all the elements of plants, and we can not know whether the effect produced by them is due to the ammonia, phosphates, or any other ingredients. For the purpose of experiment, therefore, we must use a manure that furnishes ammonia without any admixture of phosphates, potash, soda, lime, magnesia, etc., even though it cost much more than we could obtain the same amount of ammonia in other manures. I make these remarks in order to correct a very common opinion, that if experiments do not pay, they are useless. The ultimate object, indeed, is to ascertain the most profitable method of manuring; but the means of obtaining this information, can not in all cases be profitable.

"Similar experiments to those made on Indian corn, were made on soil of a similar character, on about an acre of Chinese sugar-cane. I do not propose to give the results in detail, at this time, and allude to them merely to mention one very important fact, the superphosphate of lime had a very marked effect. This manure was applied in the hill on one plot (the twentieth of an acre,) at the rate of 400 lbs. per acre, and the plants on this plot came up first, and outgrew all the others from the start, and ultimately attained the height of about ten feet; while on the plot receiving no manure, the plants were not five feet high. This is a result entirely different from what I should have expected. It has been supposed, from the fact that superphosphate of lime had no effect on wheat, that it would probably have little effect on corn, or on the sugar-cane, or other ceralia; and that, as ammonia is so beneficial for wheat, it would probably be beneficial for corn and sugar-cane. The above experiments indicate that such is the case, in regard to Indian corn, so far as the production of grain is concerned, though, as we have stated, it is not true in reference to the early growth of the plants. The superphosphate of lime on Indian corn, stimulated the growth of the plants, in a very decided manner at first, so much so, that we were led to suppose, for some time, that it would give the largest crop; but at harvest, it was found that it produced no more corn than plaster. These results seem to indicate, that superphosphate of lime stimulates the growth of stalks and leaves, and has little effect in increasing the production of seed. In raising Indian corn, for fodder or for soiling purposes, superphosphate of lime may be beneficial, as well as in growing the sorghum for sugar-making purposes, or for fodder—though, perhaps, not for seed."

"In addition to the experiments given above, I also made the same season, on an adjoining field, another set of experiments on Indian corn, the results of which are given below.

"The land on which these experiments were made, is of a somewhat firmer texture than that on which the other set of experiments was made. It is situated about a mile from the barn-yard, and on this account, has seldom, if ever been manured. It has been cultivated for many years with ordinary farm crops. It was plowed early in the spring, and it was harrowed until quite mellow. The corn was planted May 30, 1857. Each experiment occupied one-tenth of an acre, consisting of 4 rows 3-1/2 feet apart, and the same distance between the hills in the rows, with one row without manure between each experimental plot.

"The manure was applied in the hill, in the same manner as in the first set of experiments.

"The barnyard-manure was well-rotted, and consisted principally of cow-dung with a little horse-dung. Twenty two-horse wagon loads of this was applied per acre, and each load would probably weigh about one ton. It was put in the hill and covered with soil, and the seed then planted on the top.

"The following table gives the results of the experiments:

Table Showing the Results of Experiments on Indian Corn, Made Near Rochester, N.Y., in the Year 1857.

SdC Bushels of ears of sound corn per acre. SfC Bushels of ears of soft corn per acre. TC Total No. of bushels of ears of corn per acre. ISdC Increase per acre of ears sound corn. ISfC Increase per acre of ears of soft corn. TIC Total increase per acre of ears of corn.

-+ -+ + + -+ + + Descriptions of manures and Plots quantities applied per acre SdC SfC TC ISdC ISfC TIC -+ -+ + + -+ + + 1. No manure 75 12 87 .. .. .. 2. 20 loads barn-yard manure 82-1/2 10 92-1/2 5-1/2 .. 5-1/2 3. 150 lbs. sulphate of ammonia 85 30 115 10 18 28 4. 300 lbs. superphosphate 88 10 98 11 .. 11 of lime 5. 400 lbs. Peruvian guano 90 30 120 15 18 33 6. 400 lbs. of "Cancerine," 85 20 105 10 8 18 or fish manure -+ -+ + + -+ + +

"As before stated, the land was of a stronger nature than that on which the first set of experiments was made, and it was evidently in better condition, as the plot having no manure produced 20 bushels of ears of corn per acre more than the plot without manure in the other field.

"On plot 4, 300 lbs. of superphosphate of lime gives a total increase of 11 bushels of ears of corn per acre over the unmanured plot, agreeing exactly with the increase obtained from the same quantity of the same manure on plot 5, in the first set of experiments.

"Plot 3, dressed with 150 lbs. of sulphate of ammonia per acre, gives a total increase of 28 bushels of ears of corn per acre, over the unmanured plot; and an increase of 22-1/2 bushels of ears per acre over plot 2, which received 20 loads of good, well-rotted barnyard-dung per acre.

"Plot 5, with 400 lbs. of Peruvian guano per acre gives the best crop of this series viz: an increase of 33 bushels of corn per acre over the unmanured plot, and 27-1/2 over the plot manured with 20 loads of barnyard-dung. The 400 lbs. of 'Cancerine'—an artificial manure made in New Jersey from fish—gives a total increase of 18 bushels of ears per acre over the unmanured plot, and 12-1/2 bushels more than that manured with barn-yard dung, though 5 bushels of ears of sound corn and 10 bushels of 'nubbins' per acre less than the same quantity of Peruvian guano."


To raise a large crop of turnips, especially of ruta-bagas, there is nothing better than a liberal application of rich, well-rotted farm-yard-manure, and 250 to 300 lbs. of good superphosphate of lime per acre, drilled in with the seed.

I have seen capital crops of common turnips grown with no other manure except 300 lbs. of superphosphate per acre, drilled with the seed. Superphosphate has a wonderful effect on the development of the roots of the turnip. And this is the secret of its great value for this crop. It increases the growth of the young plant, developing the formation of the roots, and when the turnip once gets full possession of the soil, it appropriates all the plant-food it can find. A turnip-crop grown with superphosphate, can get from the soil much more nitrogen than a crop of wheat. The turnip-crop, when supplied with superphosphate, is a good "scavenger." It will gather up and organize into good food the refuse plant-food left in the soil. It is to the surface soil, what clover is to the subsoil. To the market gardener, or to a farmer who manures heavily common turnips drilled in with superphosphate will prove a valuable crop. On such land no other manure will be needed. I cannot too earnestly recommend the use of superphosphate as a manure for turnips.

For Swede turnips or ruta-bagas, it will usually be necessary, in order to secure a maximum crop, to use a manure which, in addition to superphosphate, contains available nitrogen. A good dressing of rich, well-rotted manure, spread on the land, and plowed under, and then 300 lbs. of superphosphate drilled in with the seed, would be likely to give a good crop.

In the absence of manure, there is probably nothing better for the ruta-bagas than 300 lbs. of so-called "rectified" Peruvian guano, that is, guano treated with sulphuric acid, to render the phosphates soluble. Such a guano is guaranteed to contain 10 per cent of ammonia, and 10 per cent of soluble phosphoric acid, and would be a good dressing for Swede turnips.

The best way to use guano for turnips is to sow it broadcast on the land, and harrow it in, and then either drill in the turnip-seed on the flat, or on ridges. The latter is decidedly the better plan, provided you have the necessary implements to do the work expeditiously. A double mould-board plow will ridge up four acres a day, and the guano being previously sown on the surface, will be turned up with the mellow surface-soil into the ridge, where the seed is to be sown. The young plants get hold of it and grow so rapidly as to be soon out of danger from the turnip-beetle.


When sugar-beets are grown for feeding to stock, there is probably little or no difference in the manurial requirements of sugar-beets and mangel-wurzel. Our object is to get as large a growth as possible consistent with quality.

"Large roots," said the Deacon, "have been proved to contain less nutriment than small roots."

True, but it does not follow from this that rich land, or heavy manuring is the chief cause of this difference. It is much more likely to be due to the variety selected. The seed-growers have been breeding solely for size and shape. They have succeeded to such an extent that 84 gross tons of roots have been grown on an acre. This is equal to over 94 of our tons per acre. "That is an enormous crop," said the Deacon; "and it would require some labor to put 10 acres of them in a cellar."

"If they were as nutritious as ordinary mangels," said I, "that would be no argument against them. But such is not the case. In a letter just received from Mr. Lawes, (May, 1878,) he characterizes them as 'bladders of water and salts.'"

Had the seed-growers bred for quality, the roots would have been of less size, but they would contain more nutriment.

What we want is a variety that has been bred with reference to quality; and when this is secured, we need not fear to make the land rich and otherwise aim to secure great growth and large-sized roots.

It certainly is not good economy to select a variety which has been bred for years to produce large-sized roots, and then sow this seed on poor land for the purpose of obtaining small-sized roots. Better take a variety bred for quality, and then make the land rich enough to produce a good crop.

We are not likely to err in making the land too rich for mangel-wurzel or for sugar-beets grown for stock. When sugar-beets are grown for sugar, we must aim to use manures favorable for the production of sugar, or rather to avoid using those which are unfavorable. But where sugar-beets are grown for food, our aim is to get a large amount of nutriment to the acre. And it is by no means clear to my mind that there is much to be gained by selecting the sugar-beet instead of a good variety of mangel-wurzel. It is not a difficult matter, by selecting the largest roots for seed, and by liberal manuring, and continuously selecting the largest roots, to convert the sugar-beet into a mangel-wurzel.

When sugar-beets are grown for food, we may safely manure them as we would mangel-wurzel, and treat the two crops precisely alike.

I usually raise from ten to fifteen acres of mangel-wurzel every year. I grow them in rotation with other crops, and not as the Hon. Harris Lewis and some others do, continuously on the same land. We manure liberally, but not extravagantly, and get a fair yield, and the land is left in admirable condition for future crops.

I mean by this, not that the land is specially rich, but that it is very clean and mellow.

"In 1877," said the Deacon, "you had potatoes on the land where you grew mangels the previous year, and had the best crop in the neighborhood."

This is true, but still I do not think it a good rotation. A barley crop seeded with clover would be better, especially if the mangels were heavily manured. The clover would get the manure which had been washed into the subsoil, or left in such a condition that potatoes or grain could not take it up.

There is one thing in relation to my mangels of 1876 which has escaped the Deacon. The whole piece was manured and well prepared, and dibbled in with mangels, the rows being 2-1/2 feet apart, and the seed dropped 15 inches apart in the rows. Owing to poor seed, the mangels failed on about three acres, and we plowed up the land and drilled in corn for fodder, in rows 2-1/2 feet apart, and at the rate of over three bushels of seed per acre. We had a great crop of corn-fodder.

The next year, as I said before, the whole piece was planted with potatoes, and if it was true that mangels are an "enriching crop," while corn is an "exhausting" crop, we ought to have had much better potatoes after the mangels than after corn. This was certainly not the case; if there was any difference, it was in favor of the corn. But I do not place any confidence in an experiment of this kind, where the crops were not weighed and the results carefully ascertained.

Mr. Lawes has made some most thorough experiments with different manures on sugar-beets, and in 1876 he commenced a series of experiments with mangel-wurzel.

The land is a rather stiff clay loam, similar to that on which the wheat and barley experiments were made. It is better suited to the growth of beets than of turnips.

"Why so," asked the Deacon, "I thought that black, bottom land was best for mangels."

"Not so, Deacon," said I, "we can, it is true, grow large crops of mangels on well-drained and well-manured swampy or bottom land, but the best soil for mangels, especially in regard to quality, is a good, stiff, well-worked, and well-manured loam."

"And yet," said the Deacon, "you had a better crop last year on the lower and blacker portions of the field than on the heavy, clayey land."

In one sense, this is true. We had dry weather in the spring, and the mangel seed on the dry, clayey land did not come up as well as on the cooler and moister bottom-land. We had more plants to the acre, but the roots on the clayey land, when they once got fair hold of the soil and the manure, grew larger and better than on the lighter and moister land. The great point is to get this heavy land into a fine, mellow condition.

But to Mr. Lawes' experiments. They are remarkably interesting and instructive. But it is not necessary to go into all the details. Suffice it to say that the experiments seem to prove, very conclusively, that beets require a liberal supply of available nitrogen. Thus, without manure, the yield of beets was about 7-1/2 tons of bulbs per acre.

With 550 lbs. nitrate of soda per acre, the yield was a little over 22 tons per acre. With 14 tons of farmyard-manure, 18 tons per acre. With 14 tons of farmyard manure and 550 lbs. nitrate of soda, over 27-1/2 tons per acre.

Superphosphate of lime, sulphates of potash, soda, and magnesia, and common salt, alone, or with other manures, had comparatively little effect.

Practically, when we want to grow a good crop of beets or mangels, these experiments prove that what we need is the richest kind of barnyard-manure.

If our manure is not rich, then we should use, in addition to the manure, a dressing of nitrate of soda—say 400 or 500 lbs. per acre.

If the land is in pretty good condition, and we have no barnyard-manure, we may look for a fair crop from a dressing of nitrate of soda alone.

"I see," said the Deacon, "that 550 lbs. of nitrate of soda alone, gave an increase of 14-1/2 tons per acre. And the following year, on the same land, it gave an increase of 13-1/2 tons; and the next year, on the same land, over 9 tons."

"Yes," said I, "the first three years of the experiments (1871-2-3), 550 lbs. of nitrate of soda alone, applied every year, gave an average yield of 19-1/4 tons of bulbs per acre. During the same three years, the plot dressed with 14 tons of barnyard-manure, gave an average yield of 16-1/4 tons. But now mark. The next year (1874) all the plots were left without any manure, and the plot which had been previously dressed with nitrate of soda, alone, fell off to 3 tons per acre, while the plot which had been previously manured with barnyard-manure, produced 10-3/4 tons per acre."

"Good," said the Deacon, "there is nothing like manure."


I class these plants together, because, though differing widely in many respects, they have one feature in common. They are all artificial productions.

A distinguished amateur horticulturist once said to me, "I do not see why it is I have so much trouble with lettuce. My land is rich, and the lettuce grow well, but do not head. They have a tendency to run up to seed, and soon get tough and bitter."

I advised him to raise his own seed from the best plants—and especially to reject all plants that showed any tendency to go prematurely to seed. Furthermore, I told him I thought if he would sow a little superphosphate of lime with the seed, it would greatly stimulate the early growth of the lettuce.

As I have said before, superphosphate, when drilled in with the seed, has a wonderful effect in developing the root-growth of the young plants of turnips, and I thought it would have the same effect on lettuce, cabbage, cauliflowers, etc.

"But," said he, "it is not roots that I want, but heads."

"Exactly," said I, "you do not want the plants to follow out their natural disposition and run up to seed. You want to induce them to throw out a great abundance of tender leaves. In other words, you want them to 'head.' Just as in the turnip, you do not want them to run up to seed, but to produce an unnatural development of 'bulb.'"

Thirty years ago, Dr. Gilbert threw out the suggestion, that while it was evident that turnips required a larger proportion of soluble phosphates in the soil than wheat; while wheat required a larger proportion of available nitrogen in the soil, than turnips, it was quite probable, if we were growing turnips for seed, that then, turnips would require the same kind of manures as wheat.

We want exceedingly rich land for cabbage, especially for an early crop. This is not merely because a large crop of cabbage takes a large amount of plant-food out of the soil, but because the cultivated cabbage is an artificial plant, that requires its food in a concentrated shape. In popular language, the plants have to be "forced."

According to the analyses of Dr. Anderson, the outside leaves of cabbage, contain, in round numbers, 91 per cent of water; and the heart leaves, 94-1/2 per cent. In other words, the green leaves contain 3-1/2 per cent more dry matter than the heart leaves.

Dr. Voelcker, who analyzed more recently some "cattle-cabbage," found 89-1/2 per cent of water in the green leaves, and 83-3/4 per cent in the heart and inner leaves—thus confirming previous analyses, and showing also that the composition of cabbages varies considerably.

Dr. Voelcker found much less water in the cabbage than Dr. Anderson.

The specimen analyzed by Dr. V., was grown on the farm of the Royal Ag. College of England, and I infer from some incidental remarks, that the crop was grown on rather poor land. And it is probably true that a large crop of cabbage grown on rich land, contains a higher percentage of water than cabbage grown on poorer land. On the poor land, the cabbage would not be likely to head so well as on the rich land, and the green leaves of cabbage contain more than half as much again real dry substance as the heart leaves.

The dry matter of the heart leaves, however, contains more actual nutriment than the dry matter of the green leaves.

It would seem very desirable, therefore, whether we are raising cabbage for market or for home consumption, to make the land rich enough to grow good heads. Dr. Voelcker says, "In ordinary seasons, the average produce of Swedes on our poorer fields is about 15 tons per acre. On weighing the produce of an acre of cabbage, grown under similar circumstances, I found that it amounted to 17-1/2 tons per acre. On good, well-manured fields, however, we have had a much larger produce."

In a report on the "Cultivation of Cabbage, and its comparative Value for Feeding purposes," by J. M. M'Laren, of Scotland, the yield of Swede turnips, was 29-3/4 tons per acre, and the yield of cabbage, 47-3/4 tons per acre.

"It is very evident," said the Deacon, "that if you grow cabbage you should make the land rich enough to produce a good crop—and I take it that is all you want to show."

"I want to show," I replied, "that our market gardeners have reason for applying such apparently excessive dressings of rich manure to the cabbage-crop. They find it safer to put far more manure into the land than the crop can possibly use, rather than run any risk of getting an inferior crop. An important practical question is, whether they can not grow some crop or crops after the cabbage, that can profitably take up the manure left in the soil."

Prof. E. Wolff, in the last edition of "Praktische Duengerlehre," gives the composition of cabbage. For the details of which, see Appendix, page 345.

From this it appears that 50 tons of cabbage contain 240 lbs. of nitrogen, and 1,600 lbs. of ash. Included in the ash is 630 lbs. of potash; 90 lbs. of soda; 310 lbs. of lime; 60 lbs. of magnesia; 140 lbs. of phosphoric acid; 240 lbs. of sulphuric acid, and 20 lbs. of silica.

Henderson, in "Gardening for Profit," advises the application of 75 tons of stable or barn-yard manure per acre, for early cabbage. For late cabbage, after peas or early potatoes, he says about 10 tons per acre are used.

Brill, in "Farm Gardening and Seed Growing," also makes the same distinction in regard to the quantity of manure used for early and late cabbage. He speaks of 70 to 80 tons or more, per acre, of well-rotted stable-manure as not an unusual or excessive dressing every year.

Now, according to Wolff's table, 75 tons of fresh stable-manure, with straw, contains 820 lbs. of nitrogen; 795 lbs. of potash; 150 lbs. soda; 315 lbs. of lime; 210 lbs. of magnesia; 420 lbs. of phosphoric acid; 105 lbs. sulphuric acid; 2,655 lbs. of silica, and 60 lbs. of chlorine.

"Put the figures side by side," said the Deacon, "so that we can compare them."

Here they are:

- 75 tons Fresh Horse 50 tons Manure. Cabbage. - Nitrogen 820 lbs. 240 lbs. Potash 795 " 630 " Phosphoric acid 420 " 140 " Soda 150 " 90 " Lime 315 " 310 " Magnesia 210 " 60 " -

"That is rather an interesting table," said the Doctor. "In the case of lime, the crop takes about all that this heavy dressing of manure supplies—but I suppose the soil is usually capable of furnishing a considerable quantity."

"That may be so," said the Deacon, "but all the authorities on market gardening speak of the importance of either growing cabbage on land containing lime, or else of applying lime as a manure. Quinn, who writes like a sensible man, says in his book, 'Money in the Garden,' 'A top-dressing of lime every third year, thirty or forty bushels per acre, spread broadcast, and harrowed in, just before planting, pays handsomely.'"

Henderson thinks cabbage can only be grown successfully on land containing abundance of lime. He has used heavy dressings of lime on land which did not contain shells, and the result was satisfactory for a time, but he found it too expensive.

Experience seems to show that to grow large crops of perfect cabbage, the soil must be liberally furnished with manures rich in nitrogen and phosphoric acid.

In saying this, I do not overlook the fact that cabbage require a large quantity of potash. I think, however, that when large quantities of stable or barn-yard manure is used, it will rarely be found that the soil lacks potash.

What we need to grow a large crop of cabbage, is manure from well-fed animals. Such manure can rarely be purchased. Now, the difference between rich manure and ordinary stable or barnyard-manure, consists principally in this: The rich manure contains more nitrogen and phosphoric acid than the ordinary stable-manure—and it is in a more available condition.

To convert common manure into rich manure, therefore, we must add nitrogen and phosphoric acid. In other words, we must use Peruvian guano, or nitrate of soda and superphosphate, or bone-dust, or some other substance that will furnish available nitrogen and phosphoric acid.

Or it may well be, where stable-manure can be bought for $1.00 per two-horse load, that it will be cheaper to use it in larger quantity rather than to try to make it rich. In this case, however, we must endeavor to follow the cabbage by some crop that has the power of taking up the large quantity of nitrogen and other plant-food that will be left in the soil.

The cabbage needs a large supply of nitrogen in the soil, but removes comparatively little of it. We see that when 75 tons of manure is used, a crop of 50 tons of cabbage takes out of the soil less than 30 per cent of the nitrogen. And yet, if you plant cabbage on this land, the next year, without manure, you would get a small crop.

"It cannot be for want of nitrogen," said the Deacon.

"Yes it can," said I. "The cabbage, especially the early kinds, must have in the soil a much larger quantity of available nitrogen than the plants can use."

I do not mean by this that a large crop of cabbage could be raised, year after year, if furnished only with a large supply of available nitrogen. In such a case, the soil would soon lack the necessary inorganic ingredients. But, what I mean, is this: Where land has been heavily manured for some years, we could often raise a good crop of cabbage by a liberal dressing of available nitrogen, and still more frequently, if nitrogen and phosphoric acid were both used.

You may use what would be considered an excessive quantity of ordinary stable-manure, and grow a large crop of cabbage; but still, if you plant cabbage the next year, without manure of any kind, you will get a small crop; but dress it with a manure containing the necessary amount of nitrogen, and you will, so far as the supply of plant-food is concerned, be likely to get a good crop.

In such circumstances, I think an application of 800 lbs. of nitrate of soda per acre, costing, say $32, would be likely to afford a very handsome profit.

For lettuce, in addition to well prepared rich land, I should sow 3 lbs. of superphosphate to each square rod, scattered in the rows before drilling in the seed. It will favor the formation of fibrous roots and stimulate the growth of the young plants.

In raising onions from seed, we require an abundance of rich, well-rotted manure, clean land, and early sowing.

Onions are often raised year after year on the same land. That this entails a great waste of manure, is highly probable, but it is not an easy matter to get ordinary farm-land properly prepared for onions. It needs to be clean and free from stones and rubbish of all kinds, and when once it is in good condition, it is thought better to continue it in onions, even though it may entail more or less loss of fertility.

"What do you mean," asked the Deacon, "by loss of manure?"

"Simply this," said I. "We use a far greater amount of plant-food in the shape of manure than is removed by the crop of onions. And yet, notwithstanding this fact, it is found, as a matter of experience, that it is absolutely necessary, if we would raise a large and profitable crop, to manure it every year."

A few experiments would throw much light on this matter. I should expect, when land had been heavily dressed every year for a few years, with stable-manure, and annually sown to onions, that 800 lbs. of sulphate of ammonia, or of nitrate of soda, or 1,200 lbs. of Peruvian guano would give as good a crop as 25 or 30 tons of manure. Or perhaps a better plan would be to apply 10 or 15 loads of manure, and 600 lbs. of guano, or 400 lbs. sulphate of ammonia.




The chief dependence of the market gardener must be on the stable-manure which he can obtain from the city or village. The chief defect of this manure is that it is not rich enough in available nitrogen. The active nitrogen exists principally in the urine, and this in our city stables is largely lost. A ton of fresh, unmixed horse-dung contains about 9 lbs. of nitrogen. A ton of horse-urine, 31 lbs. But this does not tell the whole story. The nitrogen in the dung is contained in the crude, undigested portions of the food. It is to a large extent insoluble and unavailable, while the nitrogen in the urine is soluble and active.

The market-gardener, of course, has to take such manure as he can get, and the only points to be considered are (1), whether he had better continue to use an excessive quantity of the manure, or (2), to buy substances rich in available nitrogen, and either mix them with the manure, or apply them separately to the soil, or (3), whether he can use this horse-manure as bedding for pigs to be fed on rich nitrogenous food.

The latter plan I adopt on my own farm, and in this way I get a very rich and active manure. I get available nitrogen, phosphoric acid, and potash, at far cheaper rates than they can be purchased in the best commercial fertilizers.

Pigs void a large amount of urine, and as pigs are ordinarily kept, much of this liquid is lost for want of sufficient bedding to absorb it. With the market-gardener or nurseryman, who draws large quantities of horse-manure from the city, this need not be the case. The necessary buildings can be constructed at little cost, and the horse-manure can be used freely. The pigs should be fed on food rich in nitrogen, such as bran, malt-combs, brewers' grains, the refuse animal matter from the slaughter-houses or butchers' stores, fish scrap, pea or lentil-meal, palm-nut cake, or such food as will furnish the most nitrogenous food, other things being equal, at the cheapest rate.

The market-gardener not only requires large quantities of rich manure, but he wants them to act quickly. The nurseryman who sets out a block of trees which will occupy the ground for three, four, or five years, may want a "lasting manure," but such is not the case with the gardener who grows crops which he takes off the land in a few months. As long as he continues to use horse or cow-manure freely, he need not trouble himself to get a slow or lasting manure. His great aim should be to make the manure as active and available as possible. And this is especially the case if he occupies clayey or loamy land. On sandy land the manure will decompose more rapidly and act quicker.

"There are many facts," said the Doctor, "that show that an artificial application of water is equivalent to an application of manure. It has been shown that market-gardeners find it necessary to apply a much larger amount of plant-food to the soil than the crops can take up. This they have to do year after year. And it may well be that, when a supply of water can be had at slight cost, it will be cheaper to irrigate the land, or water the plants, rather than to furnish such an excess of manure, as is now found necessary. Even with ordinary farm-crops, we know that they feel the effects of drouth far less on rich land than on poor land. In other words, a liberal supply of plant-food enables the crops to flourish with less water; and, on the other hand, a greater supply of water will enable the crops to flourish with a less supply of plant-food. The market-gardeners should look into this question of irrigation."


In growing garden and vegetable seeds, much labor is necessarily employed per acre, and consequently it is of great importance to produce a good yield. The best and cleanest land is necessary to start with, and then manures must be appropriately and freely used.

"But not too freely," said the Doctor, "for I am told it is quite possible to have land too rich for seed-growing."

It is not often that the land is too rich. Still, it may well be that for some crops too much stable-manure is used. But in nine cases out of ten, when such manure gives too much growth and too little or too poor seed, the trouble is in the quality of the manure. It contains too much carbonaceous matter. In other words, it is so poor in nitrogen and phosphoric acid, that an excessive quantity has to be used.

The remedy consists in making richer manures and using a less quantity, or use half the quantity of stable-manure, and apply the rectified or prepared Peruvian guano, at the rate of 300 lbs. or 400 lbs. per acre, or say 200 lbs. superphosphate and 200 lbs. nitrate of soda per acre.

Where it is very important to have the seeds ripen early, a liberal dressing, say 400 lbs. per acre, of superphosphate of lime, will be likely to prove beneficial.


I once had a small garden in the city, and having no manure, I depended entirely on thorough cultivation and artificial fertilizers, such as superphosphate and sulphate of ammonia. It was cultivated not for profit, but for pleasure, but I never saw a more productive piece of land. I had in almost every case two crops a year on the same land, and on some plots three crops. No manure was used, except the superphosphate and sulphate of ammonia, and coal and wood ashes from the house.

About 5 lbs. of sulphate of ammonia was sown broadcast to the square rod, or worked into the soil very thoroughly in the rows where the seed was to be sown. Superphosphate was applied at the same rate, but instead of sowing it broadcast, I aimed to get it as near the seed or the roots of plants as possible.

Half a teaspoonful of the mixture, consisting of equal parts of superphosphate and sulphate of ammonia, stirred into a large three gallon can of water, and sprinkled on to a bed of verbenas, seemed to have a remarkable effect on the size and brilliancy of the flowers.

Even to this day, although I have a good supply of rich barnyard-manure, I do not like to be without some good artificial manure for the garden.


The best manure for hot-beds is horse or sheep-dung that has been used as bedding for pigs.

When fresh stable-manure is used, great pains should be taken to save all the urine. In other words, you want the horse-dung thoroughly saturated with urine.

The heat is produced principally from the carbon in the manure and straw, but you need active nitrogenous matter to start the fire. And the richer the manure is in nitrogenous matter, and the more thoroughly this is distributed through the manure, the more readily will it ferment. There is also another advantage in having rich manure, or manure well saturated with urine. You can make the heap more compact. Poor manure has to be made in a loose heap, or it will not ferment; but such manure as we are talking about can be trodden down quite firm, and still ferment rapid enough to give out the necessary heat, and this compact heap will continue to ferment longer and give out a steadier heat, than the loose heap of poor manure.


Our successful nurserymen purchase large quantities of stable and other manures from the cities, drawing it as fast as it is made, and putting it in piles until wanted. They usually turn the piles once or twice, and often three times. This favors fermentation, greatly reducing it in bulk, and rendering the manure much more soluble and active. It also makes the manure in the heap more uniform in quality.

Messrs. Ellwanger & Barry tell me that they often ferment the manure that they draw from the stables in the city, and make it so fine and rich, that they get but one load of rotted manure from three loads as drawn from the stables. For some crops, they use at least 20 loads of this rotted manure per acre, and they estimate that each load of this rotted manure costs at least $5.00.

H. E. Hooker places the cost of manure equally high, but seems willing to use all he can get, and does not think we can profitably employ artificial manures as a substitute.

In this I agree with him. But while I should not expect artificial manures, when used alone, to prove as cheap or as valuable as stable-manure at present prices, I think it may well be that a little nitrate of soda, sulphate of ammonia, and superphosphate of lime, or dissolved Peruvian guano, might be used as an auxiliary manure to great advantage.

Mr. H. E. Hooker, once sowed, at my suggestion, some sulphate of ammonia and superphosphate on part of a block of nursery trees, and he could not perceive that these manures did any good. Ellwanger & Barry also tried them, and reported the same negative result. This was several years ago, and I do not think any similar experiments have been made since.

"And yet," said the Deacon, "you used these self same manures on farm-crops, and they greatly increased the growth."

"There are several reasons," said the Doctor, "why these manures may have failed to produce any marked effect on the nursery trees. In the first place, there was considerable prejudice against them, and the nurserymen would hardly feel like relying on these manures alone. They probably sowed them on land already well manured; and I think they sowed them too late in the season. I should like to see them fairly tried."

So would I. It seems to me that nitrate of soda, and superphosphate, or dissolved Peruvian guano, could be used with very great advantage and profit by the nurserymen. Of course, it would hardly be safe to depend upon them alone. They should be used either in connection with stable-manure, or on land that had previously been frequently dressed with stable-manure.


How to keep up the fertility of our apple-orchards, is becoming an important question, and is attracting considerable attention.

There are two methods generally recommended—I dare not say generally practised. The one, is to keep the orchard in bare-fallow; the other, to keep it in grass, and top-dress with manure, and either eat the grass off on the land with sheep and pigs, or else mow it frequently, and let the grass rot on the surface, for mulch and manure.

"You are speaking now," said the Deacon, "of bearing apple-orchards. No one recommends keeping a young orchard in grass. We all know that young apple trees do far better when the land is occupied with corn, potatoes, beans, or some other crop, which can be cultivated, than they do on land occupied with wheat, barley, oats, rye, buckwheat, or grass and clover. And even with bearing peach trees, I have seen a wonderful difference in an orchard, half of which was cultivated with corn, and the other half sown with wheat. The trees in the wheat were sickly-looking, and bore a small crop of inferior fruit, while the trees in the corn, grew vigorously and bore a fine crop of fruit. And the increased value of the crop of peaches on the cultivated land was far more than we can ever hope to get from a crop of wheat."

"And yet," said the Doctor, "the crop of corn on the cultivated half of the peach-orchard removed far more plant-food from the soil, than the crop of wheat. And so it is evident that the difference is not due wholly to the supply of manure in the surface-soil. It may well be that the cultivation which the corn received favored the decomposition of organic matter in the soil, and the formation of nitrates, and when the rain came, it would penetrate deeper into the loose soil than on the adjoining land occupied with wheat. The rain would carry the nitrogen down to the roots of the peach trees, and this will account for the dark green color of the leaves on the cultivated land, and the yellow, sickly-looking leaves on the trees among the wheat."


A bushel of corn fed to a hen would give no more nitrogen, phosphoric acid, and potash, in the shape of manure, than a bushel of corn fed to a pig. The manure from the pig, however, taking the urine and solid excrement together, contain 82 per cent of water, while that from the hen contains only 56 per cent of water. Moreover, hens pick up worms and insects, and their food in such case would contain more nitrogen than the usual food of pigs, and the manure would be correspondingly richer in nitrogen. Hence it happens that 100 lbs. of dry hen-manure would usually be richer in nitrogen than 100 lbs. of dry pig-manure. But feed pigs on peas, and hens on corn, and the dry pig-manure would be much richer in nitrogen than the dry hen-manure. The value of the manure, other things being equal, depends on the food and not on the animal.

Let no man think he is going to make his farm any richer by keeping hens, ducks, and geese, than he will by keeping sheep, pigs, and horses.

"Why is it, then," asked the Deacon, "that hen-dung proves such a valuable manure. I would rather have a hundred lbs. of hen-dung than half a ton of barnyard-manure?"

"And I presume you are right," said I, "but you must recollect that your hen-manure is kept until it is almost chemically dry. Let us figure up what the half ton of manure and the 100 lbs. of hen-manure would contain. Here are the figures, side by side:

- - 100 lbs. dry Half ton Hen-Manure. Cow-Dung with straw. - - Water (estimated) 12 lbs. 775 lbs. Organic Matter 51 " 203 " Ash 37 " 22 " - - Nitrogen 3-1/4 " 3-2/5 " Potash 1-3/4 " 4 " Lime 4-3/4 " 3 " Phosphoric acid 3 " 1-1/2 " - -

I would, myself, far rather have 100 lbs. of your dry hen-manure than half a ton of your farmyard-manure. Your hens are fed on richer food than your cows. The 100 lbs. of hen-manure, too, would act much more rapidly than the half ton of cow-manure. It would probably do twice as much good—possibly three or four times as much good, on the first crop, as the cow-manure. The nitrogen, being obtained from richer and more digestible food, is in a much more active and available condition than the nitrogen in the cow-dung.

"If you go on," said the Deacon, "I think you will prove that I am right."

"I have never doubted," said I, "the great value of hen-dung, as compared with barnyard-manure. And all I wish to show is, that, notwithstanding its acknowledged value, the fact remains that a given quantity of the same kind of food will give no greater amount of fertilizing matter when fed to a hen than if fed to a pig."

I want those farmers who find so much benefit from an application of hen-manure, ashes, and plaster, to their corn and potatoes, to feel that if they would keep better cows, sheep, and pigs, and feed them better, they would get good pay for their feed, and the manure would enable them to grow larger crops.

While we have been talking, the Deacon was looking over the tables. (See Appendix.) "I see," said he, "that wheat and rye contain more nitrogen than hen-manure, but less potash and phosphoric acid."

"This is true," said I, "but the way to compare them, in order to see the effect of passing the wheat through the hen, is to look at the composition of the air-dried hen-dung. The fresh hen-dung, according to the table, contains 56 per cent of water, while wheat contains less than 14-1/2 per cent."

Let us compare the composition of 1,000 lbs. air-dried hen-dung with 1,000 lbs. of air-dried wheat and rye, and also with bran, malt-combs, etc.

Phosphoric Nitrogen. Potash. Acid. Wheat 20.8 5.3 7.9 Wheat Bran 22.4 14.3 27.3 Rye 17.6 5.6 8.4 Rye Bran 23.2 19.3 34.3 Buckwheat 14.4 2.7 5.7 Buckwheat Bran 27.2 11.2 12.5 Malt-roots 36.8 20.6 18.0 Air-dry Hen-dung. 32.6 17.0 30.8

"That table," said the Doctor, "is well worth studying. You see, that when wheat is put through the process of milling, the miller takes out as much of the starch and gluten as he wants, and leaves you a product (bran), richer in phosphoric acid, potash, and nitrogen, than you gave him."

"And the same is true," continued the Doctor, "of the hen. You gave her 2,000 grains of wheat, containing 41.6 grains of nitrogen. She puts this through the mill, together with some ashes, and bones, that she picks up, and she takes out all the starch and fat, and nitrogen, and phosphate of lime, that she needs to sustain life, and to produce flesh, bones, feathers, and eggs, and leaves you 1,000 grains of manure containing 32.6 grains of nitrogen, 17.0 grains of potash, and 30.8 grains of phosphoric acid. I do not say," continued the Doctor, "that it takes exactly 2,000 grains of wheat to make 1,000 grains of dry manure. I merely give these figures to enable the Deacon to understand why 1,000 lbs. of hen-dung is worth more for manure than 1,000 lbs. of wheat."

"I must admit," said the Deacon, "that I always have been troubled to understand why wheat-bran was worth more for manure than the wheat itself, I see now—it is because there is less of it. It is for the same reason that boiled cider is richer than the cider from which it is made. The cider has lost water, and the bran has lost starch. What is left is richer in nitrogen, and potash, and phosphoric acid. And so it is with manure. The animals take out of the food the starch and fat, and leave the manure richer in nitrogen, phosphoric acid, and potash."

"Exactly," said I, "Mr. Lawes found by actual experiment, that if you feed 500 lbs. of barley-meal to a pig, containing 420 lbs. of dry substance, you get only 70 lbs. of dry substance in the manure. Of the 420 lbs. of dry substance, 276.2 lbs. are used to support respiration, etc.; 73.8 lbs. are found in the increase of the pig, and 70 lbs. in the manure."

The food contains 52 lbs. of nitrogenous matter; the increase of pig contains 7 lbs., and consequently, if there is no loss, the manure should contain 45 lbs. of nitrogenous substance = to 7.14 lbs. of nitrogen.

"In other words," said the Doctor, "the 70 lbs. of dry liquid and solid pig-manure contains 7.14 lbs. of nitrogen, or 100 lbs. would contain 10.2 lbs. of nitrogen, which is more nitrogen than we now get in the very best samples of Peruvian guano."

"And thus it will be seen," said I, "that though corn-fed pigs, leaving out the bedding and water, produce a very small quantity of manure, it is exceedingly rich."

The table from which these facts were obtained, will be found in the Appendix—pages 342-3.




"It will do more good if fermented," said a German farmer in the neighborhood, who is noted for raising good crops of cabbage, "but I like hog-manure better than cow-dung. The right way is to mix the hog-manure, cow-dung, and horse-manure together."

"No doubt about that," said I, "but when you have a good many cows, and few other animals, how would you manage the manure?"

"I would gather leaves and swamp-muck, and use them for bedding the cows and pigs. Leaves make splendid bedding, and they make rich manure, and the cow-dung and leaves, when made into a pile, will ferment readily, and make grand manure for—anything. I only wish I had all I could use."

There is no question but what cow-manure is better if fermented, but it is not always convenient to pile it during the winter in such a way that it will not freeze. And in this case it may be the better plan to draw it out on to the land, as opportunity offers.

"I have heard," said Charley, "that pig-manure was not good for cabbage, it produces 'fingers and toes,' or club-foot."

Possibly such is the case when there is a predisposition to the disease, but our German friend says he has never found any ill-effects from its use.

"Cows," said the Doctor, "when giving a large quantity of milk, make rather poor manure. The manure loses what the milk takes from the food."

"We have shown what that loss is," said I. "It amounts to less than I think is generally supposed. And in the winter, when the cows are dry, the manure would be as rich as from oxen, provided both were fed alike. See Appendix, page 342. It will there be seen that oxen take out only 4.1 lbs. of nitrogen from 100 lbs. of nitrogen consumed in the food. In other words, provided there is no loss, we should get in the liquid and solid excrements of the ox and dry cow 95.9 per cent of the nitrogen furnished in the food, and a still higher per cent of the mineral matter."


According to Prof. Wolff's table of analyses, sheep-manure, both solid and liquid, contain less water than the manure from horses, cows, or swine. With the exception of swine, the solid dung is also the richest in nitrogen, while the urine of sheep is pre-eminently rich in nitrogen and potash.

These facts are in accordance with the general opinions of farmers. Sheep-manure is considered, next to hen-manure, the most valuable manure made on the farm.

I do not think we have any satisfactory evidence to prove that 3 tons of clover-hay and a ton of corn fed to a lot of fattening-sheep will afford a quantity of manure containing any more plant-food than the same kind and amount of food fed to a lot of fattening-cattle. The experiments of Lawes & Gilbert indicate that if there is any difference it is in favor of the ox. See Appendix, page 343. But it may well be that it is much easier to save the manure from the sheep than from the cattle. And so, practically, sheep may be better manure-makers than cattle—for the simple reason that less of the urine is lost.

"As a rule," said the Doctor, "the dung of sheep contains far less water than the dung of cattle, though when you slop your breeding ewes to make them give more milk, the dung differs but little in appearance from that of cows. Ordinarily, however, sheep-dung is light and dry, and, like horse-dung, will ferment much more rapidly than cow or pig-dung. In piling manure in the winter or spring, special pains should be used to mix the sheep and horse-manure with the cow and pig-manure. And it may be remarked that for any crop or for any purpose where stable-manure is deemed desirable, sheep-manure would be a better substitute than cow or pig-manure."


The dry matter of hog-manure, especially the urine, is rich in nitrogen, but it is mixed with such a large quantity of water that a ton of hog-manure, as it is usually found in the pen, is less valuable than a ton of horse or sheep-manure, and only a little more valuable than a ton of cow-manure.

As I have before said, my own plan is to let the store-hogs sleep in a basement-cellar, and bed them with horse and sheep-manure. I have this winter over 50 sows under the horse-stable, and the manure from 8 horses keeps them dry and comfortable, and we are not specially lavish with straw in bedding the horses.

During the summer we aim to keep the hogs out in the pastures and orchards as much as possible. This is not only good for the health of the pigs, but saves labor and straw in the management of the manure. It goes directly to the land. The pigs are good grazers and distribute the manure as evenly over the land as sheep—in fact, during hot weather, sheep are even more inclined to huddle together under the trees, and by the side of the fence, than pigs. This is particularly the case with the larger breeds of sheep.

In the winter it is not a difficult matter to save all the liquid and solid excrements from pigs, provided the pens are dry and no water comes in from the rain and snow. As pigs are often managed, this is the real difficulty. Pigs void an enormous quantity of water, especially when fed on slops from the house, whey, etc. If they are kept in a pen with a separate feeding and sleeping apartment, both should be under cover, and the feeding apartment may be kept covered a foot or so thick with the soiled bedding from the sleeping apartment. When the pigs get up in a morning, they will go into the feeding apartment, and the liquid will be discharged on the mass of manure, straw, etc.

"Dried muck," said the Deacon, "comes in very handy about a pig-pen, for absorbing the liquid."

"Yes," said I, "and even dry earth can be used to great advantage, not merely to absorb the liquid, but to keep the pens sweet and healthy. The three chief points in saving manure from pigs are: 1, To have the pens under cover; 2, to keep the feeding apartment or yard covered with a thick mass of strawy manure and refuse of any kind, and 3, to scatter plenty of dry earth or dry muck on the floor of the sleeping apartment, and on top of the manure in the feeding apartment."

"You feed most of your pigs," said the Deacon, "out of doors in the yard, and they sleep in the pens or basement cellars, and it seems to me to be a good plan, as they get more fresh air and exercise than if confined."

"We do not lose much manure," said I, "by feeding in the yards. You let a dozen pigs sleep in a pen all night, and as soon as they hear you putting the food in the troughs outside, they come to the door of the pen, and there discharge the liquid and solid excrements on the mass of manure left there on purpose to receive and absorb them. I am well aware that as pigs are often managed, we lose at least half the value of their manure, but there is no necessity for this. A little care and thought will save nearly the whole of it."


The Deacon and I have just been weighing a bushel of different kinds of manure made on the farm. We made two weighings of each kind, one thrown in loose, and the other pressed down firm. The following is the result:

Weight of Manure per Bushel, and per Load of 50 Bushels.

Wt/Bu Weight per Bushel in lbs. Wt/Load Weight per Load of 50 bushels.

-+ + -+ No. Kind And Condition Of Manures. Wt/Bu Wt/Load -+ + -+ lbs. lbs. 1. Fresh horse-manure free from straw 37-1/2 1875 2. " " " " " " pressed 55 2750 3. Fresh horse-manure, as used for bedding pigs 28 1400 4. " " " " " " " " pressed 46 2300 5. Horse-manure from pig cellar 50 2500 6. " " " " " pressed 72 3600 7. Pig-manure 57 2850 8. " " pressed 75 3750 9. Pig-manure and dry earth 98 4900 10. Sheep-manure from open shed 42 2100 11. " " " " " pressed 65 3250 12. Sheep-manure from closed shed 28 1400 13. " " " " " pressed 38 1900 14. Fresh cow-dung, free from straw 87 4350 15. Hen-manure 34 1700 16. " " pressed 48 2400 -+ + -+

"In buying manure," said the Deacon, "it makes quite a difference whether the load is trod down solid or thrown loosely into the box. A load of fresh horse-manure, when trod down, weighs half as much again as when thrown in loose."

"A load of horse-manure," said Charley, "after it has been used for bedding pigs, weighs 3,600 lbs., and only 2,300 lbs. when it is thrown into the pens, and I suppose a ton of the 'double-worked' manure is fully as valuable as a ton of the fresh horse-manure. If so, 15 'loads' of the pig-pen manure is equal to 24 'loads' of the stable-manure."

"A ton of fresh horse-manure," said the Doctor, "contains about 9 lbs. of nitrogen; a ton of fresh cow-dung about 6 lbs.; a ton of fresh sheep-dung, 11 lbs., and a ton of fresh pig-manure, 12 lbs. But if the Deacon and you weighed correctly, a 'load' or cord of cow-manure would contain more nitrogen than a load of pressed horse-manure. The figures are as follows:

A load of 50 bushels of fresh horse-dung, pressed and free from straw contains 12.37 lbs. nitrogen. A load of fresh cow-dung 13.05 " " " " sheep " 10.45 " " " " pig " 22.50 " "

"These figures," said I, "show how necessary it is to look at this subject in all its aspects. If I was buying manures by weight, I would much prefer a ton of sheep-manure, if it had been made under cover, to any other manure except hen-dung, especially if it contained all the urine from the sheep. But if buying manure by the load or cord, that from a covered pig-pen would be preferable to any other."


I have never had any personal experience in the use of liquid manure to any crop except grass. At Rothamsted, Mr. Lawes used to draw out the liquid manure in a water-cart, and distribute it on grass land.

"What we want to know," said the Deacon, "is whether the liquid from our barn-yards will pay to draw out. If it will, the proper method of using it can be left to our ingenuity."

According to Prof. Wolff, a ton of urine from horses, cows, sheep, and swine, contains the following amounts of nitrogen, phosphoric acid, and potash, and, for the sake of comparison, I give the composition of drainage from the barn-yard, and also of fresh dung of the different animals:

Table Showing the Amount of Nitrogen, Phosphoric Acid, and Potash, in One Ton of the Fresh Dung and Fresh Urine of Different Animals, and Also of the Drainage of the Barn-Yard.

Nitro(gen). Phos(phoric) Acid. Pot(ash).

- - 1 Ton Fresh Dung. 1 Ton Fresh Urine. - - - - - - Nitro. Phos. Pot. Nitro. Phos. Pot. acid. acid. - - - - - - lbs. lbs. lbs. lbs. lbs. lbs. Horse 8.8 7.0 7.0 31.0 30.0 Cow 5.8 3.4 2.0 11.6 9.8 Sheep 11.0 6.2 3.0 39.0 0.2 45.2 Swine 12.0 8.2 5.2 8.6 1.4 16.6 Mean 9.4 6.2 4.3 22.5 0.4 25.4 Drainage of barn-yard 3.0 0.2 9.8 - - - - - -

The drainage from a barn-yard, it will be seen, contains a little more than half as much nitrogen as cow-dung; and it is probable that the nitrogen in the liquid is in a much more available condition than that in the dung. It contains, also, nearly five times as much potash as the dung. It would seem, therefore, that with proper arrangements for pumping and distributing, this liquid could be drawn a short distance with profit.

But whether it will or will not pay to cart away the drainage, it is obviously to our interest to prevent, as far as possible, any of the liquid from running to waste.

It is of still greater importance to guard against any loss of urine. It will be seen that, on the average, a ton of the urine of our domestic animals contains more than twice as much nitrogen as a ton of the dung.

Where straw, leaves, swamp-muck, or other absorbent materials are not sufficiently abundant to prevent any loss of urine, means should be used to drain it into a tank so located that the liquid can either be pumped back on to the manure when needed, or drawn away to the land.

"I do not see," said the Deacon, "why horse and sheep-urine should contain so much more nitrogen and potash than that from the cow and pig."

"The figures given by Prof. Wolff," said I, "are general averages. The composition of the urine varies greatly. The richer the food in digestible nitrogenous matter, the more nitrogen will there be in the dry matter of the urine. And, other things being equal, the less water the animal drinks, the richer will the urine be in nitrogen. The urine from a sheep fed solely on turnips would contain little or no more nitrogen than the urine of a cow fed on turnips. An ox or a dry cow fed on grass would probably void no more nor no poorer urine than a horse fed on grass. The urine that Mr. Lawes drew out in a cart on to his grass-land was made by sheep that had one lb. each of oil-cake per day, and one lb. of chaffed clover-hay, and all the turnips they would eat. They voided a large quantity of urine, but as the food was rich in nitrogen, the urine was doubtless nearly or quite as rich as that analyzed by Prof. Wolff, though that probably contained less water."

If I was going to draw out liquid manure, I should be very careful to spout all the buildings, and keep the animals and manure as much under cover as possible, and also feed food rich in nitrogen. In such circumstances, it would doubtless pay to draw the urine full as well as to draw the solid manure.


The composition of human excrements, as compared with the mean composition of the excrements from horses, cows, sheep, and swine, so far as the nitrogen, phosphoric acid, and potash are concerned, is as follows:

Table Showing the Amount of Nitrogen, Phosphoric Acid, and Potash, in One Ton of Fresh Human Excrements, and in One Ton of Fresh Excrements From Horses, Cows, Sheep, and Swine.

Phos(phoric) Acid.

- Solids Urine One ton - - - - (2000 lbs). Phos. Phos. Nitrogen. acid. Potash. Nitrogen. acid. Potash. - - - - - Human 20.0 lbs. 21.8 lbs. 5.0 lbs. 12.0 lbs. 3.7 lbs. 4.0 lbs. - - - - - Mean of horse, cow, sheep, and swine 9.4 " 6.2 " 4.3 " 22.5 " 0.4 " 25.4 " - - - - -

One ton of fresh faeces contains more than twice as much nitrogen, and more than three times as much phosphoric acid, as a ton of fresh mixed animal-dung. The nitrogen, too, is probably in a more available condition than that in common barnyard-dung; and we should not be far wrong in estimating 1 ton of faeces equal to 2-1/2 tons of ordinary dung, or about equal in value to carefully preserved manure from liberally-fed sheep, swine, and fattening cattle.

"It is an unpleasant job," said the Deacon, "but it pays well to empty the vaults at least twice a year."

"If farmers," said the Doctor, "would only throw into the vaults from time to time some dry earth or coal ashes, the contents of the vaults could be removed without any disagreeable smell."

"That is so," said I, "and even where a vault has been shamefully neglected, and is full of offensive matter, it can be cleaned out without difficulty and without smell. I have cleaned out a large vault in an hour. We were drawing manure from the yards with three teams and piling it in the field. We brought back a load of sand and threw half of it into the vault, and put the other half on one side, to be used as required. The sand and faeces were then, with a long-handled shovel, thrown into the wagon, and drawn to the pile of manure in the field, and thrown on to the pile, not more than two or three inches thick. The team brought back a load of sand, and so we continued until the work was done. Sand or dry earth is cheap, and we used all that was necessary to prevent the escape of any unpleasant gases, and to keep the material from adhering to the shovels or the wagon."

"Human urine," said the Doctor, "is richer in phosphoric acid, but much poorer in nitrogen and potash than the urine from horses, cows, sheep, and swine."

"Some years ago," said the Deacon, "Mr. H. E. Hooker, of Rochester, used to draw considerable quantities of urine from the city to his farm. It would pay better to draw out the urine from farm animals."

"The figures given above," said I, "showing the composition of human excrements, are from Prof. Wolff, and probably are generally correct. But, of course, the composition of the excrements would vary greatly, according to the food."

It has been ascertained by Lawes and Gilbert that the amount of matter voided by an adult male in the course of a year is—faeces, 95 lbs.; urine, 1,049 lbs.; total liquid and solid excrements in the pure state, 1,144 lbs. These contain:

Dry substance—faeces, 23-3/4 lbs.; urine, 34-1/2; total, 58-1/4 lbs. Mineral matter—faeces, 2-1/2 lbs.; urine, 12; total, 14-1/2 lbs. Carbon—faeces, 10 lbs.; urine, 12; total 22 lbs. Nitrogen—faeces, 1.2 lbs.; urine, 10.8; total, 12 lbs. Phosphoric acid—faeces, 0.7 lbs.; urine, 1.93; total, 2.63 lbs. Potash—faeces, 0.24 lbs.; urine, 2.01; total, 2.25 lbs.

The amount of potash is given by Prof. E. Wolff, not by Lawes and Gilbert.

The mixed solid and liquid excrements, in the condition they leave the body, contain about 95 per cent of water. It would require, therefore, 20 tons of fresh mixed excrements, to make one ton of dry nightsoil, or the entire amount voided by a mixed family of 43 persons in a year.

One hundred lbs. of fresh faeces contain 75 lbs. of water, and 25 lbs. of dry substance.

One hundred lbs. of fresh urine contain 96-1/2 lbs. of water, and 3-1/2 lbs. of dry substance.

One hundred lbs. of the dry substance of the faeces contain 5 lbs. of nitrogen, and 5-1/2 lbs. of phosphates.

One hundred lbs. of the dry substance of the urine contain 27 lbs. of nitrogen, and 10-3/4 lbs. of phosphates.

These figures are from Lawes and Gilbert, and may be taken as representing the composition of excrements from moderately well-fed persons.

According to Wolff, a ton of fresh human urine contains 12 lbs. of nitrogen. According to Lawes and Gilbert, 18 lbs.

The liquid carted from the city by Mr. Hooker was from well-fed adult males, and would doubtless be fully equal to the figures given by Lawes and Gilbert. If we call the nitrogen worth 20 cents a lb., and the phosphoric acid (soluble) worth 12-1/2 cents, a ton of such urine would be worth, on the land, $1.06.

"A ton of the fresh faeces," said the Deacon, "at the same estimate, would be worth (20 lbs. nitrogen, at 20 cents, $4; 21-3/4 lbs. phosphoric acid, at 12-1/2 cents, $2.70), $6.70."

"Not by a good deal," said the Doctor. "The nitrogen and phosphoric acid in the urine are both soluble, and would be immediately available. But the nitrogen and phosphoric acid in the faeces would be mostly insoluble. We cannot estimate the nitrogen in the faeces at over 15 cents a lb., and the phosphoric acid at 5 cents. This would make the value of a ton of fresh faeces, on the land, $4.09."

"This makes the ton of faeces worth about the same as a ton of urine. But I would like to know," said the Deacon, "if you really believe we could afford to pay $4 per ton for the stuff delivered on the farm?"

"If we could get the genuine article," said the Doctor, "it would be worth $4 a ton. But, as a rule, it is mixed with water, and dirt, and stones, and bricks, and rubbish of all kinds. Still, it is unquestionably a valuable fertilizer."

"In the dry-earth closets," said I, "such a large quantity of earth has to be used to absorb the liquid, that the material, even if used several times, is not worth carting any considerable distance. Dr. Gilbert found that 5 tons of absolutely dry earth, before using, contained 16.7 lbs. of nitrogen.

After being used once, 5 tons of the dry earth contained 24.0 lbs. " " " twice, " " " " " 36.3 " " " " three times, " " " " " 44.6 " " " " four times, " " " " " 54.0 " " " " five times, " " " " " 61.4 " " " " six times, " " " " " 71.6 "

Dr. Voelcker found that five tons of dry earth gained about 7 lbs. of nitrogen, and 11 lbs. of phosphoric acid, each time it was used in the closets. If we consider each lb. of nitrogen with the phosphoric acid worth 20 cents a lb., 5 tons of the dry earth, after being used once, would be worth $1.46, or less than 30 cents a ton, and after it had been used six times, five tons of the material would be worth $11.98, or about $2.40 per ton.

In this calculation I have not reckoned in the value of the nitrogen the soil contained before using. Soil, on a farm, is cheap.

It is clear from these facts that any earth-closet manure a farmer would be likely to purchase in the city has not a very high value. It is absurd to talk of making "guano" or any concentrated fertilizer out of the material from earth-closets.

"It is rather a reflection on our science and practical skill," said the Doctor, "but it looks at present as though the only plan to adopt in large cities is to use enormous quantities of water and wash the stuff into the rivers and oceans for the use of aquatic plants and fishes. The nitrogen is not all lost. Some of it comes back to us in rains and dews. Of course, there are places where the sewage of our cities and villages can be used for irrigating purposes. But when water is used as freely as it ought to be used for health, the sewage is so extremely poor in fertilizing matter, that it must be used in enormous quantities, to furnish a dressing equal to an application of 20 tons of stable-manure per acre."

"If," continued the Doctor, "the sewage is used merely as water for irrigating purposes, that is another question. The water itself may often be of great benefit. This aspect of the question has not received the attention it merits."


Guano is the manure of birds that live principally on fish.

Fish contain a high percentage of nitrogen and phosphoric acid, and consequently when fish are digested and the carbon is burnt out of them, the manure that is left contains a still higher percentage of nitrogen and phosphoric acid than the fish from which it was derived.

Guano is digested fish. If the guano, or the manure from the birds living on fish, has been preserved without loss, it would contain not only a far higher percentage of nitrogen, but the nitrogen would be in a much more available condition, and consequently be more valuable than the fish from which the guano is made.

The difference in the value of guano is largely due to a difference in the climate and locality in which it is deposited by the birds. In a rainless and hot climate, where the bird-droppings would dry rapidly, little or no putrefaction or fermentation would take place, and there would be no loss of nitrogen from the formation and escape of ammonia.

In a damper climate, or where there was more or less rain, the bird-droppings would putrefy, and the ammonia would be liable to evaporate, or to be leached out by the rain.

Thirty years ago I saw a quantity of Peruvian guano that contained more than 18 per cent of nitrogen. It was remarkably light colored. You know that the white part of hen-droppings consists principally of uric acid, which contains about 33 per cent of nitrogen.

For many years it was not difficult to find guano containing 13 per cent of nitrogen, and genuine Peruvian guano was the cheapest and best source of available nitrogen. But latterly, not only has the price been advanced, but the quality of the guano has deteriorated. It has contained less nitrogen and more phosphoric acid. See the Chapter on "Value of Fertilizers," Page 324.


"I wish," said the Deacon, "you would tell us something about the 'ammonia-salts' and nitrate of soda so long used in Lawes and Gilbert's experiments. I have never seen any of them."

"You could not invest a little money to better advantage than to send for a few bags of sulphate of ammonia and nitrate of soda. You would then see what they are, and would learn more by using them, than I can tell you in a month. You use them just as you would common salt. As a rule, the better plan is to sow them broadcast, and it is important to distribute them evenly. In sowing common salt, if you drop a handful in a place, it will kill the plants. And so it is with nitrate of soda or sulphate of ammonia. Two or three pounds on a square rod will do good, but if you put half of it on a square yard, it will burn up the crop, and the other half will be applied in such a small quantity that you will see but little effect, and will conclude that it is a humbug. Judging from over thirty years' experience, I am safe in saying that not one man in ten can be trusted to sow these manures. They should be sown with as much care as you sow grass or clover-seed."

"The best plan," said the Doctor, "is to mix them with sifted coal-ashes, or with gypsum, or sifted earth."

"Perhaps so," said I, "though there is nothing gained by mixing earth or ashes with them, except in securing a more even distribution. And if I was going to sow them myself, I would much prefer sowing them unmixed. Any man who can sow wheat or barley can sow sulphate of ammonia or nitrate of soda."

"Lawes and Gilbert," said the Deacon, "used sulphate and muriate of ammonia, and in one or two instances the carbonate of ammonia. Which is the best?"

"The one that will furnish ammonia or nitrogen at the cheapest rate," said the Doctor, "is the best to use. The muriate of ammonia contains the most ammonia, but the sulphate, in proportion to the ammonia, is cheaper than the muriate, and far cheaper than the carbonate."

Carbonate of ammonia contains 21-1/2 per cent of ammonia.

Sulphate of ammonia contains 25-3/4 per cent of ammonia = 21-1/5 of nitrogen.

Muriate of ammonia contains 31 per cent of ammonia = 25-1/2 of nitrogen.

Nitrate of soda contains 16-2/5 per cent of nitrogen.

Nitrate of potash, 13-3/4 per cent of nitrogen.

From these figures you can ascertain, when you know the price of each, which is the cheapest source of nitrogen.

"True," said I, "but it must be understood that these figures represent the composition of a pure article. The commercial sulphate of ammonia, and nitrate of soda, would usually contain 10 per cent of impurities. Lawes and Gilbert, who have certainly had much experience, and doubtless get the best commercial articles, state that a mixture of equal parts sulphate and muriate of ammonia contains about 25 per cent of ammonia. According to the figures given by the Doctor, the mixture would contain, if pure, over 28 per cent of ammonia. In other words, 90 lbs. of the pure article contains as much as 100 lbs. of the commercial article."

As to whether it is better, when you can buy nitrogen at the same price in nitrate of soda as you can in sulphate of ammonia, to use the one or the other will depend on circumstances. The nitrogen exists as nitric acid in the nitrate of soda, and as ammonia in the sulphate of ammonia. But there are good reasons to believe that before ammonia is used by the plants it is converted into nitric acid. If, therefore, we could apply the nitrate just where it is wanted by the growing crop, and when there is rain enough to thoroughly distribute it through the soil to the depth of six or eight inches, there can be little doubt that the nitrate, in proportion to the nitrogen, would have a quicker and better effect than the sulphate of ammonia.

"There is another point to be considered," said the Doctor. "Nitric acid is much more easily washed out of the soil than ammonia. More or less of the ammonia enters into chemical combination with portions of the soil, and may be retained for months or years."

When we use nitrate of soda, we run the risk of losing more or less of it from leaching, while if we use ammonia, we lose, for the time being, more or less of it from its becoming locked up in insoluble combinations in the soil. For spring crops, such as barley or oats, or spring wheat, or for a meadow or lawn, or for top-dressing winter-wheat in the spring, the nitrate of soda, provided it is sown early enough, or at any time in the spring, just previous to a heavy rain, is likely to produce a better effect than the sulphate of ammonia. But for sowing in the autumn on winter-wheat the ammonia is to be preferred.

"Saltpetre, or nitrate of potash," said the Deacon, "does not contain as much nitrogen as nitrate of soda."

"And yet," said the Doctor, "if it could be purchased at the same price, it would be the cheaper manure. It contains 46-1/2 per cent of potash, and on soils, or for crops where potash is needed, we may sometimes be able to purchase saltpetre to advantage."

"If I could come across a lot of damaged saltpetre," said I, "that could be got for what it is worth as manure, I should like to try it on my apple trees—one row with nitrate of soda, and one row with nitrate of potash. When we apply manure to apple trees, the ammonia, phosphoric acid, and potash, are largely retained in the first few inches of surface soil, and the deeper roots get hold of only those portions which leach through the upper layer of earth. Nitric acid, however, is easily washed down into the subsoil, and would soon reach all the roots of the trees."



Bone-dust is often spoken of as a phosphatic manure, and it has been supposed that the astonishing effect bone-dust sometimes produces on old pasture-land, is due to its furnishing phosphoric acid to the soil.

But it must be remembered that bone-dust furnishes nitrogen as well as phosphoric acid, and we are not warranted in ascribing the good effect of bones to phosphoric acid alone.

Bones differ considerably in composition. They consist essentially of gelatine and phosphate of lime. Bones from young animals, and the soft porous parts of all bones, contain more gelatine than the solid parts, or the bones from older animals. On the average, 1,000 lbs. of good commercial bone-dust contains 38 lbs. of nitrogen.

On the old dairy farms of Cheshire, where bone-dust produced such marked improvement in the quantity and quality of the pastures and meadows, it was usual to apply from 4,000 to 5,000 lbs. per acre, and often more. In other words, a dressing of bone-dust frequently contained 200 lbs. of nitrogen per acre—equal to 20 or 25 tons of barn-yard manure.

"It has been supposed," said the Doctor, "that owing to the removal of so much phosphoric acid in the cheese sold from the farm, that the dairy pastures of Cheshire had been exhausted of phosphoric acid, and that the wonderful benefits following an application of bone-dust to these pastures, was due to its supplying phosphoric acid."

"I do not doubt," said I, "the value of phosphoric acid when applied in connection with nitrogen to old pasture lands, but I contend that the experience of the Cheshire dairymen with bone-dust is no positive proof that their soils were particularly deficient in phosphoric acid. There are many instances given where the gelatine of the bones, alone, proved of great value to the grass. And I think it will be found that the Cheshire dairymen do not find as much benefit from superphosphate as they did from bone-dust. And the reason is, that the latter, in addition to the phosphoric acid, furnished a liberal dressing of nitrogen. Furthermore, it is not true that dairying specially robs the soil of phosphoric acid. Take one of these old dairy farms in Cheshire, where a dressing of bone-dust, according to a writer in the Journal of the Royal Agricultural Society, has caused 'a miserable covering of pink grass, rushes, and a variety of other noxious weeds, to give place to the most luxuriant herbage of wild clover, trefoil, and other succulent and nutritious grasses.' It is evident from this description of the pastures before the bones were used, that it would take at least three acres to keep a cow for a year."

"I have known," says the same writer quoted above, "many a poor, honest, but half broken-hearted man raised from poverty to comparative independence, and many a sinking family saved from inevitable ruin by the help of this wonderful manure." And this writer not only spoke from observation and experience, but he showed his faith by his works, for he tells us that he had paid nearly $50,000 for this manure.

Now, on one of these poor dairy farms, where it required 3 acres to keep a cow, and where the grass was of poor quality, it is not probable that the cows produced over 250 lbs. of cheese in a year. One thousand pounds of cheese contains, on the average, about 45-1/2 lbs. of nitrogen; 2-1/2 lbs. of potash, and 11-1/2 lbs. of phosphoric acid. From this it follows, if 250 lbs. of cheese are sold annually from three acres of pasture, less than one lb. of phosphoric acid per acre is exported from the farm in the cheese.

One ton of timothy-hay contains nearly 14-1/2 lbs. of phosphoric acid. And so a farmer who raises a ton of timothy-hay per acre, and sells it, sends off as much phosphoric acid in one year as such a Cheshire dairyman as I have alluded to did in fourteen years.

What the dairymen want, and what farmers generally want, is nitrogen and phosphoric acid. Bone-dust furnishes both, and this was the reason of its wonderful effects.

It does not follow from this, that bone-dust is the cheapest and best manure we can use. It is an old and popular manure, and usually commands a good price. It sells for all it is worth. A dozen years ago, I bought ten tons of bone-dust at $18 per ton. I have offered $25 per ton since for a similar lot, but the manufacturers find a market in New York for all they can make.

Bone-dust, besides nitrogen, contains about 23 per cent of phosphoric acid.

"That does not give me," said the Deacon, "any idea of its value."

"Let us put it in another shape, then," said I. "One ton of good bone-dust contains about as much nitrogen as 8-1/2 tons of fresh stable-manure, and as much phosphoric acid as 110 tons of fresh stable-manure. But one ton of manure contains more potash than 5 tons of bone-dust."

Bone-dust, like barnyard-manure, does not immediately yield up its nitrogen and phosphoric acid to plants. The bone phosphate of lime is insoluble in water, and but very slightly soluble in water containing carbonic acid. The gelatine of the bones would soon decompose in a moist, porous, warm soil, provided it was not protected by the oil and by the hard matter of the bones. Steaming, by removing the oil, removes one of the hindrances to decomposition. Reducing the bones as fine as possible is another means of increasing their availability.

Another good method of increasing the availability of bone-dust is to mix it with barnyard-manure, and let both ferment together in a heap. I am inclined to think this the best, simplest, and most economical method of rendering bone-dust available. The bone-dust causes the heap of manure to ferment more readily, and the fermentation of the manure softens the bones. Both the manure and the bones are improved and rendered richer and more available by the process.

Another method of increasing the availability of bone-dust is by mixing it with sulphuric acid.

The phosphate of lime in bones is insoluble in water, though rain water containing carbonic acid, and the water in soils, slowly dissolve it. By treating the bones with sulphuric acid, the phosphate of lime is decomposed and rendered soluble. Consequently, bone-dust treated with sulphuric acid will act much more rapidly than ordinary bone-dust. The sulphuric acid does not make it any richer in phosphoric acid or nitrogen. It simply renders them more available.

"And yet," said the Doctor, "the use of sulphuric acid for 'dissolving' bones, or rather phosphate of lime, introduced a new era in agriculture. It is the grand agricultural fact of the nineteenth century."

Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse