Acetylene, The Principles Of Its Generation And Use
by F. H. Leeds and W. J. Atkinson Butterfield
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12     Next Part
Home - Random Browse

In several important respects portable acetylene apparatus may be divided into two classes from a practical point of view. There is the portable table or stand lamp intended for use in an occupied room, and there is the hand or supported lamp intended for the illumination of vehicles or open-air spaces. Economy apart, no difficulty arises from imperfect combustion or escape of unburnt gas from an outdoor lamp, but in a room the presence of unburnt acetylene must always be offensive even if it is not dangerous; while the combustion products of the impurities—and in a portable generator acetylene cannot be chemically purified—are highly objectionable. It is simply a matter of good design to render any form of portable apparatus safe against explosion (employment of proper carbide being assumed), for one or more vent-pipes can always be inserted in the proper places; but from an indoor lamp those vent-pipes cannot be made to discharge into a place of safety, while, as stated before, a generator in which the vent-pipes come into action with any frequency is but an extravagant piece of apparatus for the decomposition of so costly a material as calcium carbide. Looked at from one aspect the holder of a fixed apparatus is merely an economical substitute for the wasteful vent- pipe, because it is a place in which acetylene can be held in reserve whenever the make exceeds the consumption in speed. It is perhaps possible to conceive of a large table acetylene lamp fitted with a water- sealed rising holder; but for vehicular purposes the displacement holder is practically the only one available, and in small apparatus it becomes too minute in size to be of much service as a store for the gas produced by after-generation. Other forms of holder have been suggested by inventors, such as a collapsible bag of india-rubber or the like; but rubber is too porous, weak, and perishable a material to be altogether suitable. If it is possible, by bringing carbide and water into mutual contact in predetermined quantities, to produce gas at a uniform rate, and at one which corresponds with the requirements of the burner, in a small apparatus—and experience has shown it to be possible within moderately satisfactory limits—it is manifest that the holder is only needed to take up the gas of after-generation; and in Chapters II. and III. it was pointed out that after-generation only occurs when water is brought into contact with an excess of carbide. If, then, the opposite system of construction is adopted, and carbide is fed into water mechanically, no after-generation can take place; and provided the make of gas can be controlled in a small carbide-feed generator as accurately as is possible in a small water-to-carbide generator, the carbide-feed principle will exhibit even greater advantages in portable apparatus than it does in plant of domestic size. Naturally almost every variety of carbide-feeding gear, especially when small, requires or prefers granulated (or granulated and "treated") carbide; and granulated carbide must inevitably be considerably more expensive per unit of light evolved than the large material, but probably in the application to which the average portable acetylene apparatus is likely to be put, strict economy is not of first consequence. In portable acetylene generators of the carbide-feed type, the supply is generally governed by the movements of a mushroom-headed or conical valve at the mouth of a conical carbide vessel; such movements occurring in sympathy with the alterations in level of the water in the decomposing chamber, which is essentially a small displacement holder also, or being produced by the contraction of a flexible chamber through which the gas passes on its way to the burner. So far as it is safe to speak definitely on a matter of this kind, the carbide-feed device appears to work satisfactorily in a stationary (e.g., table) lamp; but it is highly questionable whether it could be applied to a vehicular apparatus exposed to any sensible amount of vibration. The device is satisfactory on the table of an occupied room so far, be it understood, as any small portable generators can be: it has no holder, but since no after-generation occurs, no holder is needed; still the combustion products contaminate the room with all the sulphur and phosphorus of the crude acetylene.

For vehicular lamps, and probably for hand lanterns, the water-to-carbide system has practically no alternative (among actual generators), and safety and convenience have to be gained at the expense of the carbide. In such apparatus the supply of water is usually controlled ultimately by pressure, though a hand-operated needle-valve is frequently put on the water tube. The water actually reaches the carbide either by dropping from a jet, by passing along, upwards or downwards, a "wick" such as is used in oil-lamps, or by percolating through a mass of porous material like felt. The carbide is held in a chamber closed except at the gas exit to the burner and at the inlet from the water reservoir: so that if gas is produced more rapidly than the burner takes it, more water is prevented from entering, or the water already present is driven backwards out of the decomposing chamber into some adjoining receptacle. It is impossible to describe in detail all the lamps which have been constructed or proposed for vehicular use; and therefore the subject must be approached in general terms, discussing simply the principles involved in the design of a safe portable generator.

In all portable apparatus, and indeed in generators of larger dimensions, the decomposing chamber must be so constructed that it can never, even by wrong manipulation, be sealed hermetically against the atmosphere. If there is a cock on the water inlet tube which is capable of being completely shut, there must be no cock between the decomposing chamber and the burner. If there is a cock between the carbide vessel and the burner, the water inlet tube must only be closed by the water, being water-sealed, in fact, so that if pressure rises among the carbide the surplus gas may blow the seal or bubble through the water in the reservoir. If the water-supply is mainly controlled by a needle-valve, it is useful to connect the burner with the carbide vessel through a short length of rubber tube; and if this plan is adopted, a cock can, if desired, be put close to the burner. The rubber should not be allowed to form a bend hanging down, or water vapour, &c., may condense and extinguish the flame. In any case there should be a steady fall from the burner to the decomposing chamber, or to some separate catch-pit for the products of condensation. Much of the success attainable with small generators will depend on the water used. If it is contaminated with undissolved matter, the dirt will eventually block the fine orifices, especially the needle-valve, or will choke the pores of the wick or the felt pad. If the water contains an appreciable amount of "temporary hardness," and if it becomes heated much in the lamp, fur will be deposited sooner or later, and will obviously give trouble. Where the water reservoir is at the upper part of the lamp, and the liquid is exposed to the heat of the flame, fur will appear quickly if the water is hard. Considerable benefit would accrue to the user of a portable lamp by the employment of rain water filtered, if necessary, through fabric or paper. The danger of freezing in very severe weather may be prevented by the use of calcium chloride, or preferably, perhaps, methylated spirit in the water (cf. Chapter III., p. 92). The disfavour with which cycle and motor acetylene lamps are frequently regarded by nocturnal travellers, other than the users thereof, is due to thoughtless design in the optical part of such lamps, and is no argument against the employment of acetylene. By proper shading or deflection of the rays, the eyes of human beings and horses can be sufficiently protected from the glare, and the whole of the illumination concentrated more perfectly on the road surface and the lower part of approaching objects—a beam of light never reaching a height of 5 feet above the ground is all that is needed to satisfy all parties.

As the size of the generator rises, conditions naturally become more suited to the construction of a satisfactory apparatus; until generators intended to supply light to the whole of (say) a railway carriage, or the head and cab lamps of a locomotive, or for the outside and inside lighting of an omnibus are essentially generators of domestic dimensions somewhat altered in internal construction to withstand vibration and agitation. As a rule there is plenty of space at the side of a locomotive to carry a generator fitted with a displacement holder of sufficient size, which is made tall rather than wide, to prevent the water moving about more than necessary. From the boiler, too, steam can be supplied to a coil to keep the liquid from freezing in severe weather. Such apparatus need not be described at length, for they can be, and are, made on lines resembling those of domestic generators, though more compactly, and having always a governor to give a constant pressure. For carriage lighting any ordinary type of generator, preferably, perhaps, fitted with a displacement holder, can be erected either in each corridor carriage, or in a brake van at the end of the train. Purifiers may be added, if desired, to save the burners from corrosion; but the consumption of unpurified gas will seldom be attended by hygienic disadvantages, because the burners will be contained in closed lamps, ventilating into the outside air. The generator, also, may conveniently be so constructed that it is fed with carbide from above the roof, and emptied of lime sludge from below the floor of the vehicle. It can hardly be said that the use of acetylene generated on board adds a sensible risk in case of collision. In the event of a subsequent fire, the gas in the generator would burn, but not explode; but in view of the greater illuminating power per unit volume of carbide than per equal volume of compressed oil- gas, a portable acetylene generator should be somewhat less objectionable than broken cylinders of oil-gas if a fire should follow a railway accident of the usual kind. More particularly by the use of "cartridges" of carbide, a railway carriage generator can be constructed of sufficient capacity to afford light for a long journey, or even a double journey, so that attention would be only required (in the ordinary way) at one end of the line.

Passing on from the generators used for the lighting of vehicles and for portable lamps for indoor lighting to the considerably larger portable generators now constructed for the supply of acetylene for welding purposes and for "flare" lamps, it will be evident that they may embody most or all of the points which are essential to the proper working of a fixed generator for the supply of a small establishment. The holder will generally be of the displacement type, but some of these larger portable generators are equipped with a rising holder. The generators are, naturally, automatic in action, but may be either of the water-to-carbide or carbide-to-water type—the latter being preferable in the larger sizes intended for use with the oxy-acetylene blow-pipe for welding, &c., for which use a relatively large though intermittent supply of acetylene is called for. The apparatus is either carried by means of handles or poles attached to it, or is mounted on a wheelbarrow or truck for convenience of transport to the place where it is to be used. The so called "flare" lamps, which are high power burners mounted, with or without a reflector, above a portable generator, are extremely useful for lighting open spaces where work has to be carried on temporarily after nightfall, and are rapidly displacing oil-flares of the Lucigen type for such purposes.

The use of "cartridges" of calcium carbide has already been briefly referred to in Chapters II. and III. These cartridges are usually either receptacles of thin sheet-metal, say tin plate, or packages of carbide wrapped up in grease proof paper or the like. If of metal, they may have a lid which is detached or perforated before they are put into the generator, or the generator (when automatic and of domestic size) may be so arranged that a cartridge is punctured in one or more places whenever more gas is required. If wrapped in paper, the cartridges may be dropped into water by an automatic generator at the proper times, the liquid then loosening the gum and so gaining access to the interior; or one spot may be covered by a drape of porous material (felt) only, through which the water penetrates slowly. The substance inside the cartridge may be ordinary, granulated, or "treated" carbide. Cartridges or "sticks" of carbide are also made without wrappings, either by moistening powdered carbide with oil and compressing the whole into moulds, or by compressing dry carbide dust and immersing the sticks in oil or molten grease. The former process is said to cause the carbide to take up too much oil, so that sticks made by the second method are reputed preferable. All these cartridges have the advantage over common carbide of being more permanent in damp air, of being symmetrical in shape, of decomposing at a known speed, and of liberating acetylene in known quantity; but evidently they are more expensive, owing to the cost of preparing them, &c. They may be made more cheaply from the dust produced in the braking of carbide, but in that case the yield of gas will be relatively low.

It is manifest that, where space is to spare, purifiers containing the materials mentioned in Chapter V. can be added to any portable acetylene apparatus, provided also that the extra weight is not prohibitive. Cycle lamps and motor lamps must burn an unpurified gas unpurified from phosphorus and sulphur; but it is always good and advisable to filter the acetylene from dust by a plug of cotton wool or the like, in order to keep the burners as clear as may be. A burner with a screwed needle for cleaning is always advantageous. Formerly the burners used on portable acetylene lamps were usually of the single jet or rat-tail, or the union jet or fish tail type, and exhibited in an intensified form, on account of their small orifices, all the faults of these types of burners for the consumption of acetylene (see Chapter VIII.). Now, however, there are numerous special burners adapted for use in acetylene cycle and motor lamps, &c., and many of these are of the impinging jet type, and some have steatite heads to prevent distortion by the heat. One such cycle- lamp burner, as sold in England by L. Wiener, of Fore Street, London, is shown in Fig. 21. A burner constructed like the "Kona" (Chapter VIII.) is made in small sizes (6, 8 and 10 litres per hour) for use in vehicular lamps, under the name of the "Konette," by Falk, Stadelmann and Co., Ltd., of London, who also make a number of other small impinging jet burners. A single jet injector burner on the "Phos" principle is made in small sizes by the Phos Co., of London, specially for use in lamps on vehicles.

Nevertheless, although satisfactory medium-sized vehicular lamps for the generation of acetylene have been constructed, the best way of using acetylene for all such employments as these is to carry it ready made in a state of compression. For railway purposes, where an oil-gas plant is in existence, and where it is merely desired to obtain a somewhat brighter light, the oil-gas may be enriched with 20 per cent. of acetylene, and the mixed gas pumped into the same cylinders to a pressure of 10 atmospheres, as mentioned in Chapter XI.; the only alteration necessary being the substitution of suitable small burners for the common oil-gas jets. As far as the plant is concerned, all that is required is a good acetylene generator, purifier, and holder from which the acetylene can be drawn or forced through a meter into a larger storage holder, the meter being connected by gearing with another meter on the pipe leading from the oil-gas holder to the common holder, so that the necessary proportions of the two gases shall be introduced into the common holder simultaneously. From this final holder the enriched gas will be pumped into the cylinders or into a storage cylinder, by means of a thoroughly cooled pump, so that the heat set free by the compression may be safely dissipated.

Whenever still better light is required in railway carriages, as also for the illumination of large, constantly used vehicles, such as omnibuses, the acetone process (cf. Chapter XI.) exhibits notable advantages. The light so obtained is the light of neat acetylene, but the gas is acetylene having an upper limit of explosibility much lower than usual because of the vapour of acetone in it. In all other respects the presence of the acetone will be unnoticeable, for it is a fairly pure organic chemical body, which burns in the flame completely to carbon dioxide and water, exactly as acetylene itself does. If the acetylene is merely compressed into porous matter without acetone, the gas burnt is acetylene simply; but per unit of volume or weight the cylinders will not be capable of developing so much light.

In the United States, at least one railway system (The Great Northern) has a number of its passenger coaches lighted by means of plain acetylene carried in a state of compression in cylinders without porous matter. The gas is generated, filtered from dust, and stored in an ordinary rising holder at a factory alongside the line; being drawn from this holder through a drier to extract moisture, and through a safety device, by a pump which, in three stages, compresses the acetylene into large storage reservoirs. The safety device consists of a heavy steel cylinder filled with some porous substance which, like the similar material of the acetone cylinders, prevents any danger of the acetylene contained in the water-sealed holder being implicated in an explosion starting backwards from the compression, by extinguishing any spark which might be produced there. The plant on the trains comprises a suitable number of cylinders, filled by contact with the large stores of gas to a pressure of 10 atmospheres, pipes of fusible metal communicating with the lamps, and ordinary half-foot acetylene burners. The cylinders are provided with fusible plugs, so that, in the event of a fire, they and the service- pipes would melt, allowing the gas to escape freely and burn in the air, instead of exploding or dissociating explosively within the cylinders should the latter be heated by any burning woodwork or the like. It is stated that this plan of using acetylene enables a quantity of gas to be carried under each coach which is sufficient for a run of from 53 to 70 hours' duration, or of over 3600 miles; that is to say, enables the train, in the conditions obtaining on the line in question, to make a complete "round trip" without exhaustion of its store of artificial light. The system has been in operation for some years, and appears to have been so carefully managed that no accident has arisen; but it is clear that elements of danger are present which are eliminated when the cylinders are loaded with porous matter and acetone. The use of a similar system of compressed acetylene train lighting in South America has been attended with a disastrous explosion, involving loss of life.

It may safely be said that the acetone system, or less conveniently perhaps the mere compression into porous matter, is the best to adopt for the table-lamp which is to be used in occupied rooms Small cylinders of such shapes as to form an elegant base for a table-lamp on more or less conventional lines would be easy to make. They would be perfectly safe to handle. If accidentally or wilfully upset, no harm would arise. By deliberate ill-treatment they might be burst, or the gas-pipe fractured below the reducing valve, so that gas would escape under pressure for a time; but short of this they would be as devoid of extra clangor in times of fire as the candle or the coal-gas burner. Moreover, they would only contaminate the air with carbon dioxide and water vapour, for the gas is purified before compression; and modern investigations have conclusively demonstrated that the ill effects produced in the air of an imperfectly ventilated room by the extravagant consumption of coal-gas depend on the accumulation of the combustion products of the sulphur in the gas rather than upon the carbon dioxide set free.

One particular application of the portable acetylene apparatus is of special interest. As calcium carbide evolves an inflammable gas when it merely comes into contact with water, it becomes possible to throw into the sea or river, by hand or by ejection from a mortar, a species of bomb or portable generator which is capable of emitting a powerful beam of light if only facilities are present for inflaming the acetylene generated; and it is quite easy so to arrange the interior of such apparatus that they can be kept ready for instant use for long periods of time without sensible deterioration, and that they can be recharged after employment. Three methods of firing the gas have been proposed. In one the shock or contact with the water brings a small electric battery into play which produces a spark between two terminals projecting across the burner orifice; in the second, a cap at the head of the generator contains a small quantity of metallic potassium, which decomposes water with such energy that the hydrogen liberated catches fire; and in the third a similar cap is filled with the necessary quantity of calcium phosphide, or the "carbophosphide of calcium" mentioned in Chapter XI., which yields a flame by the immediate ignition of the liquid phosphine produced on the attack of water. During the two or three seconds consumed in the production of the spark or pilot flame, the water is penetrating the main charge of calcium carbide in the interior of the apparatus, until the whole is ready to give a bright light for a time limited only by the capacity of the generator. It is obvious that such apparatus may be of much service at sea: they may be thrown overboard to illuminate separate lifebuoys in case of accident, or be attached to the lifebuoys they are required to illuminate, or be used as lifebuoys themselves if fitted with suitable chains or ropes; they may be shot ahead to illuminate a difficult channel, or to render an enemy visible in time of war. Several such apparatus have already been constructed and severely tested; they appear to give every satisfaction. They are, of course, so weighted that the burner floats vertically, while buoyancy is obtained partly by the gas evolved, and partly by a hollow portion of the structure containing air. Cartridges of carbide and caps yielding a self- inflammable gas can be carried on board ship, by means of which the torches or lifebuoys may be renewed after service in a few minutes' time.



The sale and purchase of calcium carbide in this country will, under existing conditions, usually be conducted in conformity with the set of regulations issued by the British Acetylene Association, of which a copy, revised to date, is given below:


1. The carbide shall be guaranteed by the seller to yield, when broken to standard size, i.e., in lumps varying from 1 to 2-1/2 inches or larger, not less than 4.8 cubic feet per lb., at a barometric pressure of 30 inches and temperature of 60 deg. Fahr. (15.55 deg. Centigrade). The actual gas yield shall be deemed to be the gas yield ascertained by the analyst, plus 5 per cent.

"Carbide yielding less than 4.8 cubic feet in the sizes given above shall be paid for in proportion to the gas yield, i.e., the price to be paid shall bear the same relation to the contract price as the gas yield bears to 4.8 cubic feet per lb.

"2. The customer shall have the right to refuse to take carbide yielding in the sizes mentioned above less than 4.2 cubic foot, per lb., and it shall lie, in case of refusal and as from the date of the result, of the analysis being made known to either party, at the risk and expense of the seller.

"3. The carbide shall not contain higher figures of impurities than shall from time to time be fixed by the Association.

"4. No guarantee shall be given for lots of less than 3 cwt., or for carbide crushed to smaller than the above sizes.

"5. In case of dispute as to quality, either the buyer or the seller shall have the right to have one unopened drum per ton of carbide, or part of a ton, sent for examination to one of the analysts appointed by the Association, and the result of the examination shall be held to apply to the whole of the consignment to which the drum belonged. "6. A latitude of 5 per cent, shall be allowed for analysis; consequently differences of 5 per cent. above or below the yields mentioned in 1 and 2 shall not be taken into consideration.

"7. Should the yield of gas be less than 4.8 cubic feet less 5 per cent., the carriage of the carbide to and from the place of analysis and the cost of the analysis shall be paid for by the seller. Should the yield be more than 4.8 cubic feet less 5 per cent., the carriage and costs of analysis shall be borne by the buyer, who, in addition, shall pay an increase of price for the carbide proportionate to the gas yield above 4.8 cubic feet plus 5 per cent.

"8. Carbide of 1 inch mesh and above shall not contain more than 5 per cent. of dust, such dust to be defined as carbide capable of passing through a mesh of one-sixteenth of an inch.

"9. The seller shall not be responsible for deterioration of quality caused by railway carriage in the United Kingdom, unless he has sold including carriage to the destination indicated by the buyer.

"10. Carbide destined for export shall, in case the buyer desires to have it tested, be sampled at the port of shipment, and the guarantee shall cease after shipment.

"11. The analyst shall take a sample of not less than 1 lb. each from the top, centre, and bottom of the drum. The carbide shall be carefully broken up into small pieces, due care being taken to avoid exposure to the air as much as possible, carefully screened and tested for gas yield by decomposing it in water, previously thoroughly saturated by exposure to acetylene for a period of not less than 48 hours.

"12. Carbide which, when properly decomposed, yields acetylene containing from all phosphorus compounds therein more than .05 per cent. by volume of phosphoretted hydrogen, may be refused by the buyer, and any carbide found to contain more than this figure, with a latitude of .01 per cent. for the analysis, shall lie at the risk and expense of the seller in the manner described in paragraph 2.

"The rules mentioned in paragraph 7 shall apply as regards the carriage and costs of analysis; in other words, the buyer shall pay these costs if the figure is below 0.05 per cent. plus 0.01 per cent., and the seller if the figure is above 0.05 per cent. plus 0.01 per cent.

"The sampling shall take place in the manner prescribed in paragraphs 5 and 11, and the analytical examination shall be effected in the manner prescribed by the Association and obtainable upon application to the Secretary."

* * * * *

The following is a translation of the corresponding rules issued by the German Acetylene Association (Der Deutsche Acetylenverein) in regard to business dealings in calcium carbide, as put into force on April 1, 1909:



"The price is to be fixed per 100 kilogrammes (= 220 lb.) net weight of carbide in packages containing about 100 kilogrammes.

"By packages containing about 100 kilogrammes are meant packages containing within 10 per cent. above or below that weight.

"The carbide shall be packed in gas- and water-tight vessels of sheet- iron of the strength indicated in the prescriptions of the carrying companies.

"The prices for other descriptions of packing must be specially stated.

"Place of Delivery.

"For consignment for export, the last European shipping port shall be taken as the place of delivery.


"Commercial carbide shall be of such quality that in the usual lumps of 15 to 80 mm. (about 3/5 to 3 inches) diameter it shall afford a yield of at least 300 litres at 15 deg. C. and 760 mm. pressure of crude acetylene per kilogramme for each consignment (= 4.81 cubic feet at 60 deg. F. and 30 inches per lb.). A margin of 2 per cent. shall be allowed for the analysis. Carbide which yields less than 300 litres per kilogramme, but not less than 270 litres (= 4.33 cubic feet) of crude acetylene per kilogramme (with the above-stated 2 per cent. margin for analysis) must be accepted by the buyer. The latter, however, is entitled to make a proportionate deduction from the price and also to deduct the increased freight charges to the destination or, if the latter is not settled at the time when the transaction is completed, to the place of delivery. Carbide which yields less than 270 litres of crude acetylene per kilogramme need not be accepted.

"Carbide must not contain more than 5 per cent. of dust. By dust is to be understood all which passes through a screen of 1 mm. (0.04 inch) square, clear size of holes.

"Small carbide of from 4 to 15 mm. (= 1/6 to 3/5 inch) in size (and intermediate sizes) must yield on the average for each delivery at least 270 litres at 15 deg. C. and 760 mm. pressure of crude acetylene per kilogramme (= 4.33 cubic feet at 60 deg. F. and 30 inches per lb.) A margin of 2 per cent. shall be allowed for the analysis. Small carbide of from 4 to 15 mm. in size (and intermediate sizes) which yields less than 270 litres but not less than 250 litres (= 4.01 cubic feet per lb.) of crude acetylene per kilogramme (with the above-stated 2 per cent. margin for analysis) must be accepted by the buyer. The latter, however, is entitled to make a proportionate deduction from the price and also to deduct the increased freight charges to the destination or, if the latter is not settled at the time when the transaction is completed, to the place of delivery. Small carbide of from 4 to 15 mm. in size (and intermediate sizes) which yields less than 250 litres per kilogramme need not be accepted.

"Carbide shall only be considered fit for delivery if the proportion of phosphoretted hydrogen in the crude acetylene does not amount to more than 0.04 volume per cent. A margin of 0.01 volume per cent. shall be allowed for the analysis for phosphoretted hydrogen. The whole of the phosphorus compounds contained in the gas are to be calculated as phosphoretted hydrogen.

"Period for Complaints.

"An interval of four weeks from delivery shall be allowed for complaints for consignments of 5000 kilogrammes (= 5 tons) and over, and an interval of two weeks for smaller consignments. A complaint shall refer only to a quantity of carbide remaining at the time of taking the sample.

"Determination of Quality.

"1. In case the parties do not agree that the consignee is to send to the analyst for the determination of the quality one unopened and undamaged drum when the consignment is less than 5000 kilogrammes, and two such drums when it is over 5000 kilogrammes, a sample for the purpose of testing the quality is to be taken in the following manner:

"A sample having a total weight of at least 2 kilogrammes (= 4.4 lb.) is to be taken. If the delivery to be tested does not comprise more than ten drums, the sample is to be taken from an unopened and undamaged drum selected at random. With deliveries of more than ten drums, the sample is to be drawn from not fewer than 10 per cent, of the lot, and from each of the unopened and undamaged drums drawn for the purpose not less than 1 kilogramme (= 2.2 lb.) is to be taken.

"The sampling is to be carried out by a trustworthy person appointed by the two parties, or by one of the experts regularly recognised by the German Acetylene Association, thus: Each selected drum, before opening, is to be turned over twice (to got rid of any local accumulation of dust) and the requisite quantity is to be withdrawn with a shovel (not with the hand) from any part of it. These samples are immediately shot into one or more vessels which are closed air- and water-tight. The lid is secured by a seal. No other description of package, such as cardboard cases, boxes, &c., is permissible.

"If there is disagreement as to the choice of a trustworthy person, each of the two parties is to take the required quantity, as specified above.

"2. The yield of gas and the proportion of phosphoretted hydrogen contained in it are to be determined by the methods prescribed by the German Acetylene Association. If there are different analyses giving non- concordant results, an analysis is to be made by the German Acetylene Association, which shall be accepted as final and binding.

"In cases, however, where the first analysis has been made in the Laboratory of the German Acetylene Association and arbitration is required, the decisive analysis shall be made by the Austrian Acetylene Association. If one of the parties prevents the arbitrator's analysis being carried out, the analysis of the other party shall be absolutely binding on him.

"3. The whole of the cost of sampling and analysis is to be borne by the party in the wrong."

* * * * *

The corresponding regulations issued by the Austrian Acetylene Association (Der Oesterreichische Acetylenverein) are almost identical with those of the German Association. They contain, however, provisions that the price is to include packing, that the carbide must not be delivered in lumps larger than the fist, that the sample may be sealed in a glass vessel with well-ground glass stopper, that the sample is to be transmitted to the testing laboratory with particulars of the size of the lots and the number of drums drawn for sampling, and that the whole of it is to be gasified in lots of upwards of 1 kilogramme (= 2.2 lb.) apiece.

In Italy, it is enacted by the Board of Agriculture, Commerce and Industry that by calcium carbide is to be understood for legal purposes also any other carbide, or carbide-containing mixture, which evolves acetylene by interaction with water. Also that only calcium carbide, which on admixture with water yields acetylene containing less than 1 per cent. of its volume of sulphuretted hydrogen and phosphoretted hydrogen taken together, may be put on the market.

It is evident from the regulations quoted that the determination of the volume of gas which a particular sample of calcium carbide is capable of yielding, when a given weight of it is decomposed under the most favourable conditions, is a matter of the utmost practical importance to all interested in the trafficking of carbide, i.e., to the makers, vendors, brokers, and purchasers of that material, as well as to all makers and users of acetylene generating plant. The regulations of the British Association do not, however, give details of the method which the analyst should pursue in determining the yield of acetylene; and while this may to a certain extent be advantageously left to the discretion of the competent analyst, it is desirable that the results of the experience already won by those who have had special opportunities for practising this branch of analytical work should be embodied in a set of directions for the analysis of carbide, which may be followed in all ordinary analyses of that material. By the adoption of such a set of directions as a provisional standard method, disputes as to the quantity of carbide will be avoided, while it will still be open to the competent analyst to modify the method of procedure to meet the requirements of special cases. It would certainly be unadvisable in the present state of our analytical methods to accept any hard and fast of rules for analysis for determining the quality of carbide, but it is nevertheless well to have the best of existing methods codified for the guidance of analysts. The substance of the directions issued by the German Association (Der Deutsche Acetylenverein) is reproduced below.


"The greatest precision is attained when the whole of the sample submitted to the analyst is gasified in a carbide-to-water apparatus, and the gas evolved is measured in an accurately graduated gasholder.

"The apparatus used for this analysis must not only admit of all the precautionary rules of gas-analytical work being observed, but must also fulfil certain other experimental conditions incidental to the nature of the analysis.

"(a) The apparatus must be provided with an accurate thermometer to show the temperature of the confining water, and with a pressure gauge, which is in communication with the gasholder.

"(b) The generator must either be provided with a gasholder which is capable of receiving the quantity of gas evolved from the whole amount of carbide, or the apparatus must be so constructed that it becomes possible with a gasholder which in not too large (up to 200 litres = say 7 cubic feet capacity) to gasify a larger amount of carbide.

"(c) The generator must be constructed so that escape of the evolved gas from it to the outer air is completely avoided.

"(d) The gasholder must be graduated in parts up to 1/4 per cent. of its capacity, must travel easily, and be kept, as far as may be in suspension by counterweighting.

"(e) The water used for decomposing the carbide and the confining water must be saturated, before use, with acetylene, and, further, the generator must, before the analysis proper, be put under the pressure of the confining (or sealing) liquid."

The following is a description of a typical form of apparatus corresponding with the foregoing requirements:

"The apparatus, shown in the annexed figure, consists of the generator A, the washer B, and the gasholder C.

"The generator A consists of a cylindrical vessel with sloping bottom, provided with a sludge outlet a, a gas exit-pipe b, and a lid b' fastened by screws. In the upper part ten boxes c are installed for the purpose of receiving the carbide. The bottoms of those boxes are flaps which rest through their wire projections on a revolvable disc d, which is mounted on a shaft l. This shaft passes through a stuffing-box to the outside of the generator and can be rotated by moans of the chains f, the pulleys g and h, and the winch i. Its rotation causes rotation of the disc d. The disc d, on which the bottoms of the carbide- holders are supported, is provided with a slot e. On rotating the disc, on which the supporting wires of the bottoms of the carbide-holders rest, the slot is brought beneath these wires in succession; and the bottoms, being thus deprived of their support, drop down. It is possible in this way to effect the discharge of the several carbide-holders by gradual turning of the winch i.

"The washer B is provided with a thermometer m passing through a sound stuffing-box and extending into the water.

"The gasholder C is provided with a scale and pointer, which indicate how much gas there is in it. It is connected with the pressure-gauge n, and is further provided with a control thermometer o. The gas exit-pipe q can be shut off by a cock. There is a cock between the gasholder and the washer for isolating one from the other.

"The dimensions of the apparatus are such that each carbide-holder can contain readily about half a kilogramme (say l lb.) of carbide. The gasholder is of about 200 litres (say 7 cubic feet) capacity; and if the bell is 850 mm. (= 33-1/2 inches) high, and 550 mm. (= 21-1/2 inches) in diameter it will admit of the position being read off to within half a litre (say 0.02 cubic foot)."

The directions of the German Association for sampling a consignment of carbide packed in drums each containing 100 kilogrammes (say 2 cwt.) have already been given in the rules of that body. They differ somewhat from those issued by the British Association (vide ante), and have evidently been compiled with a view to the systematic and rapid sampling of larger consignments than are commonly dealt with in this country. Drawing a portion of the whole sample from every tenth drum is substantially the same as the British Association's regulations for cases of dispute, viz., to have one unopened drum (i.e., one or two cwt.) per ton of carbide placed at the analyst's disposal for sampling. Actually the mode of drawing a portion of the whole sample from every tenth vessel, or lot, where a large number is concerned, is one which would naturally be adopted by analysts accustomed to sampling any other products so packed or stored, and there in no reason why it should be departed from in the case of large consignments of carbide. For lots of less than ten drums, unless there is reason to suspect want of uniformity, it should usually suffice to draw the sample from one drum selected at random by the sampler. The analyst, or person who undertakes the sampling, must, however, exercise discretion as to the scheme of sampling to be followed, especially if want of uniformity of the several lots constituting the consignment in suspected. The size of the lumps constituting a sample will be referred to later.

The British Association's regulations lead to a sample weighing about 3 lb. being obtained from each drum. If only one drum is sampled, the quantity taken from each position may be increased with advantage so as to give a sample weighing about 10 lb., while if a large number of drums is sampled, the several samples should be well mixed, and the ordinary method of quartering and re-mixing followed until a representative portion weighing about 10 lb. remains.

A sample representative of the bulk of the consignment having been obtained, and hermetically sealed, the procedure of testing by means of the apparatus already described may be given from the German Association's directions:

"The first carbide receptacle is filled with 300 to 400 grammes (say 3/4 lb.) of any readily decomposable carbide, and is hung up in the apparatus in such a position with regard to the slot e on the disc d that it will be the first receptacle to be discharged when the winch i is turned. The tin or bottle containing the sample for analysis is then opened and weighed on a balance capable of weighing exactly to 1/2 gramme (say 10 grains). The carbide in it is then distributed quickly, and as far as may be equally, into the nine remaining carbide receptacles, which are then shut and hung up quickly in the generator. The lid b' is then screwed on the generator to close it, and the empty tin or bottle, from which the sample of carbide has been removed, is weighed.

"The contents of the first carbide receptacle are then discharged by turning the winch i. Their decomposition ensures on the one hand that the sealing water and the generating water are saturated with acetylene, and on the other hand that the dead space in the generator is brought under the pressure of the seal, so that troublesome corrections which would otherwise be entailed are avoided. After the carbide is completely decomposed, but not before two hours at least have elapsed, the cock p is shut, and the gasholder is run down to the zero mark by opening the cock q. The cock q is then shut, p is opened, and the analytical examination proper is begun by discharging the several carbide receptacles by turning the winch i. After the first receptacle has been discharged, five or ten minutes are allowed to elapse for the main evolution of gas to occur, and the cock p is then shut. Weights are added to the gasholder until the manometer n gives the zero reading; the position of the gasholder C is then read off, and readings of the barometer and of the thermometer o are made. The gasholder is then emptied down to the zero mark by closing the cock p and opening q. When this is done q is closed and p is opened, and the winch i is turned until the contents of the next carbide receptacle are discharged. This procedure is followed until the carbide from the last receptacle has been gasified; then, after waiting until all the carbide has been decomposed, but in any case not less than two hours, the position of the gasholder is read, and readings of the barometer and thermometer are again taken. The total of the values obtained represents the yield of gas from the sample examined."

The following example is quoted:

Weight of the tin received, with its contained carbide . . . . . ._ = 6325 grammes. Weight of the empty tin . . . . = 1485 " __ Carbide used . . . = 4840 " = 10670 lb.

The carbide in question was distributed among the nine receptacles and gasified. The readings were:

No. Litres. Degrees C. Millimetres. 1 152.5 13 762 2 136.6 " " 3 138.5 " " 4 161.0 " " 5 131.0 " " 6 182.5 13.5 " 7 146.0 " " 8 163.0 14.0 " 9 178.5 " "

After two hours, the total of the readings was 1395.0 litres at 13.5 deg. C. and 762 mm., which is equivalent to 1403.7 litres (= 49.57 cubic feet) at 15 deg. C. and 760 mm. (or 60 deg. F. and 30 inches; there is no appreciable change of volume of a gas when the conditions under which it is measured are altered from 15 deg. C. and 760 mm. to 60 deg. F. and 30 inches, or vice versa).

The yield of gas from this sample is therefore 1403.7/4.840 = 290 litres at 15 deg. C. and 760 mm. per kilogramme, or 49.57/10.67 = 4.65 cubic feet at 60 deg. F. and 30 inches per pound of carbide. The apparatus described can, of course, be used when smaller samples of carbide only are available for gasification, but the results will be less trustworthy if much smaller quantities than those named are taken for the test.

Other forms of carbide-to-water apparatus may of course be devised, which will equally well fulfil the requisite conditions for the test, viz., complete decomposition of the whole of the carbide without excessive rise of temperature, and no loss of gas by solution or otherwise.

An experimental wet gas-motor, of which the water-line has been accurately set (by means of the Gas Referees' 1/12 cubic foot measure, or a similar meter-proving apparatus), may be used in place of the graduated gasholder for measuring the volume of the gas evolved, provided the rate of flow of the gas does not exceed 1/6 cubic foot, or say 5 litres per minute. If the generation of gas is irregular, as when an apparatus of the type described above is used, it is advisable to insert a small gasholder or large bell-governor between the washer and the meter. The meter must be provided with a thermometer, according to the indications of which the observed volumes must be corrected to the corresponding volume at normal temperature.

If apparatus such as that described above is not available, fairly trustworthy results for practical purposes may be obtained by the decomposition of smaller samples in the manner described below, provided these samples are representative of the average composition of the larger sample or bulk, and a number of tests are made in succession and the results of individual tests do not differ by more than 10 litres of gas per kilogramme (or 0.16 cubic foot per pound) of carbide.

It is necessary at the outset to reduce large lumps of carbide in the sample to small pieces, and this must be done with as little exposure as possible to the (moist) air. Failing a good pulverising machine of the coffee-mill or similar type, which does its work quickly, the lumps must be broken as rapidly as possible in a dry iron mortar, which may with advantage be fitted with a leather or india-rubber cover, through a hole in which the pestle passes. As little actual dust as possible should be made during pulverisation. The decomposition of the carbide is best effected by dropping it into water and measuring the volume of gas evolved with the precautions usually practised in gas analysis. An example of one of the methods of procedure described by the German Association will show how this test can be satisfactorily carried out:

"A Woulff's bottle, a in the annexed figure, of blown glass and holding about 1/4 litre is used as the generating vessel. One neck, about 15 mm. in internal diameter, is connected by flexible tubing with a globular vessel b, having two tubulures, and this vessel is further connected with a conical flask c, holding about 100 c.c. The other neck is provided with tubing d, serving to convey the gas to the inlet-tube, with tap e, of the 20-litre measuring vessel f, which is filled with water saturated with acetylene, and communicates through its lower tubulure with a similar large vessel g. The generating vessel a is charged with about 150 c.c. of water saturated with acetylene. The vessel f is filled up to the zero mark by raising the vessel g; the tap e is then shut, and connexion is made with the tube d. Fifty grammes (or say 2 oz.) of the pulverised carbide are then weighed into the flask c and this is connected by the flexible tubing with the vessel b. The carbide is then decomposed by bringing it in small portions at a time into the bulb b by raising the flask c, and letting it drop from b into the generating vessel a, after having opened the cock e and slightly raised the vessel f. After the last of the carbide has been introduced two hours are allowed to elapse, and the volume of gas in f is then read while the water stands at the same level in f and g, the temperature and pressure being noted simultaneously."

A second, but less commendable method of decomposing the carbide is by putting it in a dry two-necked bottle, one neck of which is connected with e, and dropping water very slowly from a tap-funnel, which enters the other neck, on to the carbide. The generating bottle should be stood in water, in order to keep it cool, and the water should be dropped in at the rate of about 50 c.c. in one hour. It will take about three hours completely to gasify the 50 grammes of carbide under these conditions. The gas is measured as before.

Cedercreutz has carried out trials to show the difference between the yields found from large and small carbide taken from the same drum. One sample consisted of the dust and smalls up to about 3/5 inch in size, while the other contained large carbide as well as the small. The latter sample was broken to the same size as the former for the analysis. Tests were made both with a large testing apparatus, such as that shown in Fig. 22, and with a small laboratory apparatus, such as that shown in Fig. 23. The dust was screened off for the tests made in the large apparatus. Two sets of testings were made on different lots of carbide, distinguished below as "A" and "B," and about 80 grammes wore taken for each determination in the laboratory apparatus, and 500 grammes in the large apparatus. The results are stated in litres (at normal temperature and pressure) per kilogramme of carbide.

"A" "B" Lot Litres Litres Small carbide, unscreened, in laboratory (1) 276 267 apparatus . . . . . / (2) 273 270 Average sample of carbide, unscreened, in (1) 318 321 laboratory apparatus . . . / (2) 320 321 Small carbide, dust freed, in large apparatus (1) 288 274 Average sample of carbide, dust freed, in (2) 320 322 large apparatus . . . . /

As the result of the foregoing researches Cedercreutz has recommended that in order to sample the contents of a drum, they should be tipped out, and about a kilogramme (say 2 to 3 lb.) taken at once from them with a shovel, put on an iron base and broken with a hammer to pieces of about 2/5 inch, mixed, and the 500 grammes required for the analysis in the form of testing plant which he employs taken from this sample. Obviously a larger sample can be taken in the same manner. On the other hand the British and German Associations' directions for sampling the contents of a drum, which have already been quoted, differ somewhat from the above, and must generally be followed in cases of dispute.

Cedercreutz's figures, given in the above table, show that it would be very unfair to determine the gas-making capacity of a given parcel of carbide in which the lumps happened to vary considerably in size by analysing only the smalls, results so obtained being possibly 15 per cent. too low. This is due to two causes: first, however carefully it be stored, carbide deteriorates somewhat by the attack of atmospheric moisture; and since the superficies of a lump (where the attack occurs) is larger in proportion to the weight of the lump as the lump itself is smaller, small lumps deteriorate more on keeping than large ones. The second reason, however, is more important. Not being a pure chemical substance, the commercial material calcium carbide varies in hardness; and when it is merely crushed (not reduced altogether to powder) the softer portions tend to fall into smaller fragments than the hard portions. As the hard portions are different in composition from the soft portions, if a parcel is sampled by taking only the smalls, practically that sample contains an excess of the softer part of the original material, and as such is not representative. Originally the German Acetylene Association did not lay down any rules as to the crushing of samples by the analyst, but subsequently they specified that the material should be tested in the size (or sizes) in which it was received. The British Association, on the contrary, requires the sample to be broken in small pieces. If the original sample is taken in such fashion as to include large and small lumps as accurately as possible in the same proportion as that in which they occur in the main parcel, no error will be introduced if that sample is crushed to a uniform size, and then subdivided again; but a small deficiency in gas yield will be produced, which will be in the consumer's favour. It is not altogether easy to see the advantage of the British idea of crushing the sample over the German plan of leaving it alone; because the analytical generator will easily take, or its parts could be modified to take, the largest lumps met with. If the sample is in very large masses, and is decomposed too quickly, polymerisation of gas may be set up; but on the other hand, the crushing and re-sampling will cause wastage, especially in damp weather, or when the sampling has to be done in inconvenient places. The British Association requires the test to be made on carbide parcels ranging between 1 and 2-1/2 inches or larger, because that is the "standard" size for this country, and because no guarantee is to be had or expected from the makers as to the gas-producing capacity of smaller material. Manifestly, if a consumer employs such a form of generator that he is obliged to use carbide below "standard" size, analyses may be made on his behalf in the ordinary way; but he will have no redress if the yield of acetylene is less than the normal. This may appear a defect or grievance; but since in many ways the use of small carbide (except in portable lamps) is not advantageous—either technically or pecuniarily—the rule simply amounts to an additional judicious incentive to the adoption of apparatus capable of decomposing standard-sized lumps. The German and Austrian Associations' regulations, however, provide a standard for the quality of granulated carbide.

It has been pointed out that the German Association's direction that the water used in the testing should be saturated with acetylene by a preliminary decomposition of 1/2 kilogramme of carbide is not wholly adequate, and it has been suggested that the preliminary decomposition should be carried out twice with charges of carbide, each weighing not less than 1 per cent. of the weight of water used. A further possible source of error lies in the fact that the generating water is saturated at the prevailing temperature of the room, and liberates some of its dissolved acetylene when the temperature rises during the subsequent generation of gas. This error, of course, makes the yield from the sample appear higher than it actually is. Its effects may be compensated by allowing time for the water in the generator or gasholder to cool to its original temperature before the final reading is made.

With regard to the measurement of the temperature of the evolved gas in the bell gasholder, it is usual to assume that the reading of a thermometer which passes through the crown of the gasholder suffices. If the thermometer has a very long stem, so that the bulb is at about the mid-height of the filled bell, this plan is satisfactory, but if an ordinary thermometer is used, it is better to take, as the average temperature of the gas in the holder, the mean of the readings of the thermometer in the crown, and of one dipping into the water of the holder seal.

The following table gives factors for correcting volumes of gas observed at any temperature and pressure falling within its range to the normal temperature (60 deg. F.) and normal barometric height (30 inches). The normal volume thus found is, as already stated, not appreciably different from the volume at 15 deg. C. and 760 mm. (the normal conditions adopted by Continental gas chemists). To use the table, find the observed temperature and the observed reading of the barometer in the border of the table, and in the space where these vertical and horizontal columns meet will be found a number by which the observed volume of gas is to be multiplied in order to find the corresponding volume under normal conditions. For intermediate temperatures, &c., the factors may be readily inferred from the table by inspection. This table must only be applied when the gas is saturated with aqueous vapour, as is ordinarily the case, and therefore a drier must not be applied to the gas before measurement.

Hammerschmidt has calculated a similar table for the correction of volumes of gas measured at temperatures ranging from 0 deg. to 30 deg. C., and under pressures from 660 to 780 mm., to 15 deg. C. and 760 mm. It is based on the coefficient of expansion of acetylene given in Chapter VI., but, as was there pointed out, this coefficient differs by so little from that of the permanent gases for which the annexed table was compiled, that no appreciable error results from the use of the latter for acetylene also. A table similar to the annexed but of more extended range is given in the "Notification of the Gas Referees," and in the text-book on "Gas Manufacture" by one of the authors.

The determination of the amounts of other gases in crude or purified acetylene is for the most part carried out by the methods in vogue for the analysis of coal-gas and other illuminating gases, or by slight modifications of them. For an account of these methods the textbook on "Gas Manufacture" by one of the authors may be consulted. For instance, two of the three principal impurities in acetylene, viz., ammonia and sulphuretted hydrogen, may be detected and estimated in that gas in the same manner as in coal gas. The detection and estimation of phosphine are, however, analytical operations peculiar to acetylene among common illuminating gases, and they must therefore be referred to.

Table to facilitate the Correction of the Volume of Gas at different Temperatures and under different Atmospheric Pressures.

__________ THERMOMETER. BAR. _________ 46 48 50 52 54 56 deg. deg. deg. deg. deg. deg. __ __ __ __ __ __ __ 28.4 0.979 0.974 0.970 0.965 0.960 0.955 28.5 0.983 0.978 0.973 0.968 0.964 0.959 28.6 0.986 0.981 0.977 0.972 0.967 0.962 28.7 0.990 0.985 0.980 0.975 0.970 0.966 28.8 0.993 0.988 0.984 0.979 0.974 0.969 28.9 0.997 0.992 0.987 0.982 0.977 0.973 29.0 1.000 0.995 0.990 0.986 0.981 0.976 29.1 1.004 0.999 0.994 0.989 0.984 0.979 29.2 1.007 1.002 0.997 0.992 0.988 0.982 29.3 1.011 1.005 1.001 0.996 0.991 0.986 29.4 1.014 1.009 1.004 0.999 0.995 0.990 29.5 1.018 1.013 1.008 1.003 0.998 0.993 29.6 1.021 1.016 1.011 1.006 1.001 0.996 29.7 1.025 1.019 1.015 1.010 1.005 1.000 29.8 1.028 1.023 1.018 1.013 1.008 1.003 29.9 1.031 1.026 1.022 1.017 1.012 1.007 30.0 1.035 1.030 1.025 1.020 1.015 1.010 30.1 1.038 1.033 1.029 1.024 1.019 1.014 30.2 1.042 1.037 1.032 1.027 1.022 1.017 30.3 1.045 1.040 1.036 1.030 1.025 1.020 30.4 1.049 1.044 1.039 1.034 1.029 1.024 30.5 1.052 1.047 1.042 1.037 1.032 1.027 __ __ __ __ __ __ __ __________ THERMOMETER. BAR. _________ 58 60 62 64 66 68 deg. deg. deg. deg. deg. deg. __ __ __ __ __ __ __ 28.5 0.954 0.949 0.944 0.939 0.934 0.929 28.6 0.958 0.953 0.947 0.943 0.938 0.932 28.7 0.961 0.956 0.951 0.946 0.941 0.936 28.8 0.964 0.959 0.954 0.949 0.944 0.939 28.9 0.968 0.963 0.958 0.953 0.948 0.942 29.0 0.971 0.966 0.961 0.956 0.951 0.946 29.1 0.975 0.969 0.964 0.959 0.954 0.949 29.2 0.978 0.973 0.968 0.963 0.958 0.952 29.3 0.981 0.976 0.971 0.966 0.961 0.956 29.4 0.985 0.980 0.975 0.969 0.964 0.959 29.5 0.988 0.983 0.978 0.973 0.968 0.962 29.6 0.992 0.986 0.981 0.976 0.971 0.966 29.7 0.995 0.990 0.985 0.980 0.974 0.969 29.8 0.998 0.993 0.988 0.983 0.978 0.972 29.9 1.002 0.997 0.991 0.986 0.981 0.976 30.0 1.005 1.000 0.995 0.990 0.985 0.979 30.1 1.009 1.003 0.998 0.993 0.988 0.983 30.2 1.012 1.007 1.002 0.996 0.991 0.986 30.3 1.015 1.010 1.005 1.000 0.995 0.989 30.4 1.019 1.014 1.008 1.003 0.998 0.993 30.5 1.022 1.017 1.012 1.006 1.001 0.996 __ __ __ __ __ __ __ ________ THERMOMETER. BAR. _______ 70 72 74 76 78 deg. deg. deg. deg. deg. __ __ __ __ __ __ 28.4 0.921 0.915 0.910 0.905 0.900 28.5 0.924 0.919 0.914 0.908 0.903 28.6 0.927 0.922 0.917 0.912 0.906 28.7 0.931 0.925 0.920 0.915 0.909 28.8 0.934 0.929 0.924 0.918 0.913 28.9 0.937 0.932 0.927 0.921 0.916 29.0 0.941 0.935 0.930 0.925 0.919 29.1 0.944 0.939 0.933 0.928 0.923 29.2 0.947 0.942 0.937 0.931 0.926 29.3 0.950 0.945 0.940 0.935 0.929 29.4 0.954 0.949 0.943 0.938 0.932 29.5 0.957 0.952 0.947 0.941 0.936 29.6 0.960 0.955 0.950 0.944 0.939 29.7 0.964 0.959 0.953 0.948 0.942 29.8 0.967 0.962 0.957 0.951 0.946 29.9 0.970 0.965 0.960 0.954 0.949 30.0 0.974 0.968 0.963 0.958 0.952 30.1 0.977 0.972 0.966 0.961 0.955 30.2 0.980 0.975 0.970 0.964 0.959 30.3 0.984 0.978 0.973 0.968 0.962 30.4 0.987 0.982 0.976 0.971 0.965 30.5 0.990 0.985 0.980 0.974 0.969 __ __ __ __ __ __

For the detection of phosphine, Berge's solution may be used. It is a "solution of 8 to 10 parts of corrosive sublimate in 80 parts of water and 20 parts of 30 per cent. hydrochloric acid." It becomes cloudy when gas containing phosphine is passed into it. It is, however, applied most conveniently in the form of Keppeler's test-papers, which have been described in Chapter V. Test-papers for phosphine, the active body in which has not yet been divulged, have recently been produced for sale by F. B. Gatehouse.

The estimation of phosphine will usually require to be carried out either (1) on gas directly evolved from carbide in order to ascertain if the carbide in question yields an excessive proportion of phosphine, or (2) upon acetylene which is presumably purified, drawn either from the outlet of the purifier or from the service-pipes, with the object of ascertaining whether an adequate purification in regard to phosphine has been accomplished. In either case, the method of estimation is the same, but in the first, acetylene should be specially generated from a small representative sample of the carbide and led directly into the apparatus for the absorption of the phosphine. If the acetylene passes into the ordinary gasholder, the amount of phosphine in gas drawn off from the holder will vary from time to time according to the temperature and the degree of saturation of the water in the holder-tank with phosphine, as well as according to the amount of phosphine in the gas generated at the time.

A method frequently employed for the determination of phosphine in acetylene is one devised by Lunge and Cedercreutz. If the acetylene is to be evolved from a sample of carbide in order to ascertain how much phosphine the latter yields to the gas, about 50 to 70 grammes of the carbide, of the size of peas, are brought into a half-litre flask, and a tap-funnel, with the mouth of its stem contracted, is passed through a rubber plug fitting the mouth of the flask. A glass tube passing through the plug serves to convey the gas evolved to an absorption apparatus, which is charged with about 75 c.c. of a 2 to 3 per cent. solution of sodium hypochlorite. The absorption apparatus may be a ten-bulbed absorption tube or any convenient form of absorption bulbs which subject the gas to intimate contact with the solution. If acetylene from a service-pipe is to be tested, it is led direct from the nozzle of a gas- tap to the absorption tube, the outlet of which is connected with an aspirator or the inlet of an experimental meter, by which the volume of gas passed through the solution is measured. But if the generating flask is employed, water is allowed to drop from the tap-funnel on to the carbide in the flask at the rate of 6 to 7 drops a minute (the tap-funnel being filled up from time to time), and all the carbide will thus be decomposed in 3 to 4 hours. The flask is then filled to the neck with water, and disconnected from the absorption apparatus, through which a little air is then drawn. The absorbing liquid is then poured, and washed out, into a beaker; hydrochloric acid is added to it, and it is boiled in order to expel the liberated chlorine. It is then usual to precipitate the sulphuric acid by adding solution of barium chloride to the boiling liquid, allowing it to cool and settle, and then filtering. The weight of barium sulphate obtained by ignition of the filter and its contents, multiplied by 0.137, gives the amount of sulphur present in the acetylene in the form of sulphuretted hydrogen. The filtrate and washings from this precipitate are rendered slightly ammoniacal, and a small excess of "magnesia mixture" is added; the whole is stirred, left to stand for 12 hours, filtered, the precipitate washed with water rendered slightly ammoniacal, dried, ignited, and weighed. The weight so found multiplied by 0.278 gives the weight of phosphorus in the form of phosphine in the volume of gas passed through the absorbent liquid.

Objection may rightly be raised to the Lunge and Cedercreutz method of estimating the phosphine in crude acetylene on the ground that explosions are apt to occur when the gas is being passed into the hypochlorite solution. Also it must be borne in mind that it aims at estimating only the phosphorus which is contained in the gas in the form of phosphine, and that there may also be present in the gas organic compounds of phosphorus which are not decomposed by the hypochlorite. But when the acetylene is evolved from the carbide in proper conditions for the avoidance of appreciable heating it appears fairly well established that phosphorus compounds other than phosphine exist in the gas only in practically negligible amount, unless the carbide decomposed is of an abnormal character. Various methods of burning the acetylene and estimating the phosphorus in the products of combustion have, however been proposed for the purpose of determining the total amount of phosphorus in acetylene. Some of them are applicable to the simultaneous determination of the total sulphur in the acetylene, and in this respect become akin to the Gas Referees' method for the determination of the sulphur compounds in coal-gas.

Eitner and Keppeler have proposed to burn the acetylene on which the estimation is to be made in a current of neat oxygen. But this procedure is rather inconvenient, and by no means essential. Lidholm liberated acetylene slowly from 10 grammes of carbide by immersing the carbide in absolute alcohol and gradually adding water, while the gas mixed with a stream of hydrogen leading to a burner within a flask. The flow of hydrogen was reduced or cut off entirely while the acetylene was coming off freely, but hydrogen was kept burning for ten minutes after the flame had ceased to be luminous in order to ensure the burning of the last traces of acetylene. The products of combustion were aspirated through a condenser and a washing bottle, which at the close were rinsed out with warm solution of ammonia. The whole of the liquid so obtained was concentrated by evaporation, filtered in order to remove particles of soot or other extraneous matter, and acidified with nitric acid. The phosphoric acid was then precipitated by addition of ammonium molybdate.

J. W. Gatehouse burns the acetylene in an ordinary acetylene burner of from 10 to 30 litres per hour capacity, and passes the products of combustion through a spiral condensing tube through which water is dropped at the rate of about 75 c.c. per hour, and collected in a beaker. The burner is placed in a glass bell-shaped combustion chamber connected at the top through a right-angled tube with the condenser, and closed below by a metal base through which the burner is passed. The amount of gas burnt for one determination is from 50 to 100 litres. When the gas is extinguished, the volume consumed is noted, and after cooling, the combustion chamber and condenser are washed out with the liquid collected in the beaker and finally with distilled water, and the whole, amounting to about 400 c.c., is neutralised with solution of caustic alkali (if decinormal alkali is used, the total acidity of the liquid thus ascertained may be taken as a convenient expression of the aggregate amount of the sulphuric, phosphoric and silicic acids resulting from the combustion of the total corresponding impurities in the gas), acidified with hydrochloric acid, and evaporated to dryness with the addition towards the end of a few drops of nitric acid. The residue is taken up in dilute hydrochloric acid; and silica filtered off and estimated if desired. To the filtrate, ammonia and magnesia mixture are added, and the magnesium pyrophosphate separated and weighed with the usual precautions. Sulphuric acid may, if desired, be estimated in the filtrate, but in that case care must be taken that the magnesia mixture used was free from it.

Mauricheau-Beaupre has elaborated a volumetric method for the estimation of the phosphine in crude acetylene depending on its decomposition by a known volume of excess of centinormal solution of iodine, addition of excess of standard solution of sodium thiosulphate, and titrating back with decinormal solution of iodine with a few drops of starch solution as an indicator. One c.c. of centinormal solution of iodine is equivalent to 0.0035 c.c. of phosphine. This method of estimation is quickly carried out and is sufficiently accurate for most technical purposes.

In carrying out these analytical operations many precautions have to be taken with which the competent analyst is familiar, and they cannot be given in detail in this work, which is primarily intended for ordinary users of acetylene, and not for the guidance of analysts. It may, however, be pointed out that many useful tests in connexion with acetylene supply can be conducted by a trained analyst, which are not of a character to be serviceable to the untrained experimentalist. Among such may be named the detection of traces of phosphine in acetylene which has passed through a purifier with a view to ascertaining if the purifying material is exhausted, and the estimation of the amount of air or other diluents in stored acetylene or acetylene generated in a particular manner. Advice on these points should be sought from competent analysts, who will already have the requisite information for the carrying out of any such tests, or know where it is to be found. The analyses in question are not such as can be undertaken by untrained persons. The text-book on "Gas Manufacture" by one of the authors gives much information on the operations of gas analysis, and may be consulted, along with Hempel's "Gas Analysis" and Winkler and Lunge's "Technical Gas Analysis."



(The purpose of this Appendix is explained in Chapter IV., page 111, and a special index to it follows the general index at the end of this book.)



Type: Automatic; carbide-to-water.

The "Siche" generator made by this firm consists of a water-tank A, having at the bottom a sludge agitator N and draw-off faucet O, and rigidly secured within it a bell-shaped generating chamber B, above which rises a barrel containing the feed chamber C, surmounted by the carbide chamber D. The carbide used is granulated or of uniform size. In the generating chamber B is an annular float E, nearly filling the area of the chamber, and connected, by two rods passing, with some lateral play, through apertures in the conical bottom of the feed chamber C, to the T-shaped tubular valve F. Consequently when the float shifts vertically or laterally the rods and valves at once move with it. The angle of the cone of the feed chamber and the curve of the tubular valve are based on the angle of rest of the size of carbide used, with the object of securing sensitiveness of the feed. The feed is thus operated by a very small movement of the float, and consequently there is but very slight rise and fall of the water in the generating chamber. Owing to the lateral play, the feed valve rarely becomes concentric with its seat. There is a cover G over the feed valve F, designed to distribute the carbide evenly about the feed aperture and to prevent it passing down the hollow of the valve and the holes through which the connecting-rods pass. It also directs the course of the evolved gas on its way to the service-pipe through the carbide in the feed chamber C, whereby the gas is dried. The carbide chamber D has at its bottom a conical valve, normally open, but closed by means of the spindle H, which is engaged at its upper end by the closing screw-cap J, which is furnished with a safelocking device to prevent its removal until the conical valve is closed and the hopper chamber D thereby cut off from the gas-supply. The cap J, in addition to a leather washer to make a gas-tight joint when down, has a lower part fitting to make an almost gas-tight joint. Thus when the cap is off; the conical valve fits gas-tight; when it is on and screwed down it is gas-tight; and when on but not screwed down, it is almost gas-tight. Escape of gas is thus avoided. A special charging funnel K, shown in half-scale, is provided for inserting in place of the screw cap. The carbide falls from the funnel into the chamber D when the chain is pulled. A fresh charge of carbide may be put in while the apparatus is in action. The evolved gas goes into the chamber C through a pipe, with cock, to a dust-arrester L, which contains a knitted stocking lightly filled with raw sheep's wool through which the gas passes to the service- pipe. The dust-arrester needs its contents renewing once in one, two, or three years, according to the make of gas. The pressure of the gas is varied as desired by altering the height of water in the tank A. When cleaning the machine, the water must never be run below the top of the generating chamber.



Type: Automatic; carbide-to-water.

The "Colt" generator made by this firm comprises a carbide hopper mounted above a generating tank containing water, and an equalising bell gasholder mounted above a seal-pot having a vent-pipe C communicating with the outer air. The carbide hopper is charged with 1/4 x 1/12 inch carbide, which is delivered from it into the water in the generating tank in small portions at a time through a double valve, which is actuated through levers connected to the crown of the equalising gasholder. As the bell of the gasholder falls the lever rotates a rock shaft, which enters the carbide hopper, and through a rigidly attached lever raises the inner plunger of the feed-valve. The inner plunger in turn raises the concentric outer stopper, thereby leaving an annular space at the base of the carbide hopper, through which a small delivery of carbide to the water in the generating tank then ensues. The gas evolved follows the course shown by the arrows in the figure into the gasholder, and raises the bell, thereby reversing the action of the levers and allowing the valve to fall of its own weight and so cut off the delivery of carbide. The outer stopper of the valve descends before the inner plunger and so leaves the conical delivery mouth of the hopper free from carbide. The inner plunger, which is capped at its lower end with rubber, then falls and seats itself moisture-tight on the clear delivery mouth of the hopper. The weight of the carbide in the hopper is taken by its sides and a projecting flange of the valve casing, so that the pressure of the carbide at the delivery point is slight and uniform. The outside of the delivery mouth is finished by a drip collar with double lip to prevent condensed moisture creeping upwards to the carbide in the hopper. A float in the generating tank, by its descent when the water falls below a certain level, automatically draws a cut off across the delivery mouth of the carbide hopper and so prevents the delivery of carbide either automatically or by hand until the water in the generating tank has been restored to its proper level. Interlocking levers, (11) and (12) in the figure, prevent the opening of the feed valve while the cap (10) of the carbide hopper is open for recharging the hopper. There is a stirrer actuated by a handle (9) for preventing the sludge choking the sludge cock. The gas passes into the gasholder through a floating seal, which serves the dual purpose of washing it in the water of the gasholder tank and of preventing the return of gas from the holder to the generating tank. From the gasholder the gas passes to the filter (6) where it traverses a strainer of closely woven cotton felt for the purpose of the removal of any lime.

Drip pipes (30) and (31) connected to the inlet- and outlet-pipes of the gasholder are sealed in water to a depth of 6 inches, so that in the event of the pressure in the generator or gasholder rising above that limit the surplus gas blows through the seal and escapes through the vent-pipe C. There is also a telescopic blow-off (32) and (33), which automatically comes into play if the gasholder bell rises above a certain height.


Type: Automatic; carbide-to-water.

The "Davis" generator made by this firm comprises an equalising bell gasholder with double walls, the inner wall surrounding a central tube rising from the top of the generating chamber, in which is placed a water-sealed carbide chamber with a rotatory feeding mechanism which is driven by a weight motor. The carbide falls from the chamber on to a wide disc from which it is pushed off a lump at a time by a swinging displacer, so arranged that it will yield in every direction and prevent clogging of the feeding mechanism. Carbide falls from the disk into the water of the generating chamber, and the evolved gas raises the bell and so allows a weighted lever to interrupt the action of the clockwork, until the bell again descends. The gas passes through a washer in the gasholder tank, and then through an outside scrubber to the service-pipe. There is an outside chamber connected by a pipe with the generating chamber, which automatically prevents over-filling with water, and also acts as a drainage chamber for the service- and blow-off-pipes. There is an agitator for the residuum and a sludge-cock through which to remove same. The feeding mechanism permits the discharge of lump carbide, and the weight motor affords independent power for feeding the carbide, at the same time indicating the amount of unconsumed carbide and securing uniform gas pressure.


Type: Automatic; carbide-to-water.

The "Omega" apparatus made by this firm consists of a generating tank containing water, and surmounted by a hopper which is filled with carbide of 1/4-inch size. The carbide is fed from the hopper into the generating tank through a mechanism consisting of a double oscillating cup so weighted that normally the feed is closed. The fall of the bell of the equalising gasholder, into which the gas evolved passes, operates a lever B, which rotates the weighted cup in the neck of the hopper and so causes a portion of carbide to fall into the water in the generating tank. The feed-cup consists of an upper cup into which the carbide is first delivered. It is then tipped from the upper cup into the lower cup while, at the same time, further delivery from the hopper is prevented. Thus only the portion of carbide which has been delivered into the lower cup is emptied at one discharge into the generator. There is a safety lock to the hopper cap which prevents the feeding mechanism coming into operation until the hopper cap is screwed down tightly. Provision is made for a limited hand-feed of carbide to start the apparatus. The gasholder is fitted with a telescoping vent-pipe, by which gas escapes to the open in the event of the bell being raised above a certain height. There is also an automatic cut-off of the carbide feed, which comes into operation it the gas is withdrawn too rapidly whether through leakage in the pipes or generating plant, or through the consumption being increased above the normal generating capacity of the apparatus. The gas evolved passes into a condensing or washing chamber placed beneath the gasholder tank and thence it travels to the gasholder. From the gasholder it goes through a purifier containing "chemically treated coke and cotton" to the supply-pipe.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12     Next Part
Home - Random Browse