The Antiquity of Man
by Charles Lyell
Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse

We have already assumed that the Alps were loftier than now, when they were the source of those gigantic glaciers which reached the flanks of the Jura. At that time gravel was borne to the greatest distances from the central mountains through the main valleys, which had a somewhat steeper slope than now, and the quantity of river-ice must at that time have aided in the transportation of pebbles and boulders. To this state of things gradually succeeded another of an opposite character, when the fall of the rivers from the mountains to the sea became less and less, while the Alps were slowly sinking, and the first retreat of the great glaciers was taking place. Suppose the depression to have been at the rate of 5 feet in a century in the mountains and only as many inches in the same time nearer the coast, still, in such areas as the eye could survey at once, comprising a small part only of Switzerland or of the basin of the Rhine, the movement might appear to be uniform and the pre-existing valleys and heights might seem to remain relatively to each other as before.

Such inequality in the rate of rising or sinking, when we contemplate large continental spaces, is quite consistent with what we know of the course of nature in our own times as well as at remote geological epochs. Thus in Sweden, as before stated, the rise of land now in progress is nearly uniform as we proceed from north to south for moderate distances; but it greatly diminishes southwards if we compare areas hundreds of miles apart; so that instead of the land rising about 5 feet in a hundred years as at the North Cape, it becomes less than the same number of inches at Stockholm, and farther south the land is stationary, or, if not, seems rather to be descending than ascending.* (* "Principles of Geology" chapter 30 9th edition page 519 et seq.)

To cite an example of high geological antiquity, M. Hebert has demonstrated that, during the Oolitic and Cretaceous periods, similar inequalities in the vertical movements of the earth's crust took place in Switzerland and France. By his own observations and those of M. Lory he has proved that the area of the Alps was rising and emerging from beneath the ocean towards the close of the Oolitic epoch, and was above water at the commencement of the Cretaceous era; while, on the other hand, the area of the Jura, about 100 miles to the north, was slowly sinking at the close of the Oolitic period, and had become submerged at the commencement of the Cretaceous. Yet these oscillations of level were accomplished without any perceptible derangement in the strata, which remained all the while horizontal, so that the Lower Cretaceous or Neocomian beds were deposited conformably on the Oolitic.* (* "Bulletin de la Societe Geologique de France" 2 series volume 16 1859 page 596.)

Taking for granted then that the depression was more rapid in the more elevated region, the great rivers would lose century after century some portion of their velocity or carrying power, and would leave behind them on their alluvial plains more and more of the moraine-mud with which they were charged, till at length, in the course of thousands or some tens of thousands of years, a large part of the main valleys would begin to resemble the plains of Egypt where nothing but mud is deposited during the flood season. The thickness of loam containing shells of land and amphibious mollusca might in this way accumulate to any extent, so that the waters might overflow some of the heights originally bounding the valley and deposits of "platform mud," as it has been termed in France, might be extensively formed. At length, whenever a re-elevation of the Alps at the time of the second extension of the glaciers took place, there would be renewed denudation and removal of such loess; and if, as some geologists believe, there has been more than one oscillation of level in the Alps since the commencement of the glacial period, the changes would be proportionally more complicated and terraces of gravel covered with loess might be formed at different heights and at different periods.


Some of the revolutions in physical geography above suggested for the continent of Europe during the Pleistocene epoch, may have had their counterparts in India in the Recent Period. The vast plains of Bengal are overspread with Himalayan mud, which as we ascend the Ganges extends inland for 1200 miles from the sea, continuing very homogeneous on the whole, though becoming more sandy as it nears the hills. They who sail down the river during a season of inundation see nothing but a sheet of water in every direction, except here and there where the tops of trees emerge above its level. To what depth the mud extends is not known, but it resembles the loess in being generally devoid of stratification, and of shells, though containing occasionally land shells in abundance, as well as calcareous concretions, called kunkur, which may be compared to the nodules of carbonate of lime sometimes observed to form layers in the Rhenish loess. I am told by Colonel Strachey and Dr. Hooker that above Calcutta, in the Hooghly, when the flood subsides, the Gangetic mud may be seen in river cliffs 80 feet high, in which they were unable to detect organic remains, a remark which I found to hold equally in regard to the Recent mud of the Mississippi.

Dr. Wallich, while confirming these observations, informs me that at certain points in Bengal, farther inland, he met with land-shells in the banks of the great river. Borings have been made at Calcutta, beginning not many feet above the sea-level, to the depth of 300 and 400 feet; and wherever organic remains were found in the strata pierced through they were of a fluviatile or terrestrial character, implying that during a long and gradual subsidence of the country the sediment thrown down by the Ganges and Brahmaputra had accumulated at a sufficient rate to prevent the sea from invading that region.

At the bottom of the borings, after passing through much fine loam, beds of pebbles, sand, and boulders were reached, such as might belong to an ancient river channel; and the bones of a crocodile and the shell of a freshwater tortoise were met with at the depth of 400 feet from the surface. No pebbles are now brought down within a great distance of this point, so that the country must once have had a totally different character and may have had its valleys, hills, and rivers, before all was reduced to one common level by the accumulation upon it of fine Himalayan mud. If the latter were removed during a gradual re-elevation of the country, many old hydrographical basins might reappear, and portions of the loam might alone remain in terraces on the flanks of hills, or on platforms, attesting the vast extent in ancient times of the muddy envelope. A similar succession of events has, in all likelihood, occurred in Europe during the deposition and denudation of the loess of the Pleistocene period, which, as we have seen in a former chapter, was long enough to allow of the gradual development of almost any amount of such physical changes.


M. Ami Boue, well known by his numerous works on geology and a well-practised observer in every branch of the science, disinterred in the year 1823 with his own hands many bones of a human skeleton from ancient undisturbed loess at Lahr, nearly opposite Strasburg, on the right side of the great valley of the Rhine. No skull was detected, but the tibia, fibula, and several other bones were obtained in a good state of preservation and shown at the time to Cuvier, who pronounced them to be human.


The banks of the Meuse at Maestricht, like those of the Rhine at Bonn and Cologne, are slightly elevated above the level of the alluvial plain. On the right bank of the Meuse, opposite Maestricht, the difference of level is so marked that a bridge with many arches has been constructed to keep up, during the flood season, a communication between the higher parts of the alluvial plain and the hills or bluffs which bound it. This plain is composed of modern loess, undistinguishable in mineral character from that of higher antiquity, before alluded to, and entirely without signs of successive deposition and devoid of terrestrial or fluviatile shells. It is extensively worked for brick-earth to the depth of about 8 feet. The bluffs before alluded to often consist of a terrace of gravel, from 30 to 40 feet in thickness, covered by an older loess, which is continuous as we ascend the valley to Liege. In the suburbs of that city patches of loess are seen at the height of 200 feet above the level of the Meuse. The table-land in that region, composed of Carboniferous and Devonian rocks, is about 450 feet high, and is not overspread with loess.

A terrace of gravel covered with loess has been mentioned as existing on the right bank of the Meuse at Maestricht. Answering to it another is also seen on the left bank below that city, and a promontory of it projecting into the alluvial plain of the Meuse and approaching to within a hundred yards of the river, was cut through during the excavation of a canal running from Maestricht to Hocht, between the years 1815 and 1823. This section occurs at the village of Smeermass, and is about 60 feet deep, the lower 40 feet consisting of stratified gravel and the upper of 20 feet of loess. The number of molars, tusks, and bones (probably parts of entire skeletons) of elephants obtained during these diggings, was extraordinary. Not a few of them are still preserved in the museums of Maestricht and Leyden, together with some horns of deer, bones of the ox-tribe and other mammalia, and a human lower jaw, with teeth. According to Professor Crahay, who published an account of it at the time, this jaw, which is now preserved at Leyden, was found at the depth of 19 feet from the surface, where the loess joins the underlying gravel, in a stratum of sandy loam resting on gravel and overlaid by some pebbly and sandy beds. The stratum is said to have been intact and undisturbed, but the human jaw was isolated, the nearest tusk of an elephant being six yards removed from it in horizontal distance.

Most of the other mammalian bones were found; like these human remains, in or near the gravel, but some of the tusks and teeth of elephants were met with much nearer the surface. I visited the site of these fossils in 1860 in company with M. van Binkhorst, and we found the description of the ground, published by the late Professor Crahay of Louvain, to be very correct.* (* M. van Binkhorst has shown me the original manuscript read to the Maestricht Athenaeum in 1823. The memoir was published in 1836 in the "Bulletin de l'Academie Royale de Belgique" volume 3 page 43.) The projecting portion of the terrace, which was cut through in making the canal, is called the hill of Caberg, which is flat-topped, 60 feet high, and has a steep slope on both sides towards the alluvial plain. M. van Binkhorst (who is the author of some valuable works on the palaeontology of the Maestricht Chalk) has recently visited Leyden, and ascertained that the human fossil above mentioned is still entire in the museum of the University. Although we had no opportunity of verifying the authenticity of Professor Crahay's statements, we could see no reason for suspecting the human jaw to belong to a different geological period from that of the extinct elephant. If this were granted, it might have no claims to a higher antiquity than the human remains which Dr. Schmerling disentombed from the Belgian caverns; but the fact of their occurring in a Pleistocene alluvial deposit in the open plains, would be one of the first examples of such a phenomenon. The top of the hill of Caberg is not so high above the Meuse as is the terrace of St. Acheul with its flint implements above the Somme, but at St. Acheul no human bones have yet been detected.

In the museum at Maestricht are preserved a human frontal and a pelvic bone, stained of a dark peaty colour; the frontal very remarkable for its lowness and the prominence of the superciliary ridges, which resemble those of the Borreby skull, Figure 5. These remains may be the same as those alluded to by Professor Crahay in his memoir, where he says that in a black deposit in the suburbs of Hocht were found leaves, nuts, and freshwater shells in a very perfect state, and a human skull of a dark colour. They were of an age long posterior to that of the loess containing the bones of elephants and in which the human jaw now at Leyden is said to have been embedded.



Geological Structure of the Island of Moen. Great Disturbances of the Chalk posterior in Date to the Glacial Drift, with Recent Shells. M. Puggaard's Sections of the Cliffs of Moen. Flexures and Faults common to the Chalk and Glacial Drift. Different Direction of the Lines of successive Movement, Fracture, and Flexure. Undisturbed Condition of the Rocks in the adjoining Danish Islands. Unequal Movements of Upheaval in Finmark. Earthquake of New Zealand in 1855. Predominance in all Ages of uniform Continental Movements over those by which the Rocks are locally convulsed.

In the preceding chapters I have endeavoured to show that the study of the successive phases of the glacial period in Europe, and the enduring marks which they have left on many of the solid rocks and on the character of the superficial drift are of great assistance in enabling us to appreciate the vast lapse of ages which are comprised in the Pleistocene epoch. They enlarge at the same time our conception of the antiquity, not only of the living species of animals and plants but of their present geographical distribution, and throw light on the chronological relations of these species to the earliest date yet ascertained for the existence of the human race. That date, it will be seen, is very remote if compared to the times of history and tradition, yet very modern if contrasted with the length of time during which all the living testacea, and even many of the mammalia, have inhabited the globe.

In order to render my account of the phenomena of the glacial epoch more complete, I shall describe in this chapter some other changes in physical geography and in the internal structure of the earth's crust, which have happened in the Pleistocene period, because they differ in kind from any previously alluded to, and are of a class which were thought by the earlier geologists to belong exclusively to epochs anterior to the origin of the existing fauna and flora. Of this nature are those faults and violent local dislocations of the rocks, and those sharp bendings and foldings of the strata, which we so often behold in mountain chains, and sometimes in low countries also, especially where the rock-formations are of ancient date.


A striking illustration of such convulsions of Pleistocene date may be seen in the Danish island of Moen, which is situated about 50 miles south of Copenhagen. The island is about 60 miles in circumference, and consists of white Chalk, several hundred feet thick, overlaid by boulder clay and sand, or glacial drift which is made up of several subdivisions, some unstratified and others stratified, the whole having a mean thickness of 60 feet, but sometimes attaining nearly twice that thickness. In one of the oldest members of the formation fossil marine shells of existing species have been found.

Throughout the greater part of Moen the strata of the drift are undisturbed and horizontal, as are those of the subjacent Chalk; but on the north-eastern coast they have been throughout a certain area bent, folded, and shifted, together with the beds of the underlying Cretaceous formation. Within this area they have been even more deranged than is the English Chalk-with-flints along the central axis of the Isle of Wight in Hampshire, or of Purbeck in Dorsetshire. The whole displacement of the Chalk is evidently posterior in date to the origin of the drift, since the beds of the latter are horizontal where the fundamental Chalk is horizontal, and inclined, curved, or vertical where the Chalk displays signs of similar derangement. Although I had come to these conclusions respecting the structure of Moen in 1835, after devoting several days in company with Dr. Forchhammer to its examination,* (* Lyell, "Geological Transactions" 2nd series volume 2 page 243.) I should have hesitated to cite the spot as exemplifying convulsions on so grand a scale, of such extremely modern date, had not the island been since thoroughly investigated by a most able and reliable authority, the Danish geologist, Professor Puggaard, who has published a series of detailed sections of the cliffs.

These cliffs extend through the north-eastern coast of the island, called Moens Klint,* (* Puggaard, "Geologie d. Insel Moen" Bern 1851; and "Bulletin de la Societe Geologique de France" 1851.) where the Chalk precipices are bold and picturesque, being 300 and 400 feet high, with tall beech-trees growing on their summits, and covered here and there at their base with huge taluses of fallen drift, verdant with wild shrubs and grass, by which the monotony of a continuous range of white Chalk cliffs is prevented.


A. Horizontal drift. B. Chalk and overlying drift beginning to rise. C. First flexure and fault. Height of cliff at this point, 180 feet.)


S. Fossil shells of recent species in the drift at this point. G. Greatest height near G, 280 feet.)

In the low part of the island, at A, Figure 47, or the southern extremity of the line of section above alluded to, the drift is horizontal, but when we reach B, a change, both in the height of the cliffs and in the inclination of the strata, begins to be perceptible, and the Chalk Number 1 soon makes its appearance from beneath the overlying members of the drift Numbers 2, 3, 4, and 5.

This Chalk, with its layers of flints, is so like that of England as to require no description. The incumbent drift consists of the following subdivisions, beginning with the lowest:

Number 2. Stratified loam and sand, 5 feet thick, containing at one spot near the base of the cliff, at s, Figure 48, Cardium edule, Tellina solidula, and Turritella, with fragments of other shells. Between Number 2 and the Chalk Number 1, there usually intervenes a breccia of broken flints.

Number 3. Unstratified blue clay or till, with small pebbles and fragments of Scandinavian rocks occasionally scattered through it, 20 feet thick.

Number 4. A second unstratified mass of yellow and more sandy clay 40 feet thick, with pebbles and angular polished and striated blocks of granite and other Scandinavian rocks, transported from a distance.

Number 5. Stratified sands and gravel, with occasionally large erratic blocks; the whole mass varying from 40 to 100 feet in thickness, but this only in a few spots.

The angularity of many of the blocks in Numbers 3 and 4, the glaciated surfaces of others, and the transportation from a distance attested by their crystalline nature, prove them to belong to the northern drift or glacial period.

It will be seen that the four subdivisions 2, 3, 4, and 5 begin to rise at B, Figure 47, and that at C, where the cliff is 180 feet high, there is a sharp flexure shared equally by the Chalk and the incumbent drift. Between D and G, Figure 48, we observe a great fracture in the rocks with synclinal and anticlinal folds, exhibited in cliffs nearly 300 feet high, the drift beds participating in all the bendings of the Chalk; that is to say, the three lower members of the drift, including Number 2, which, at the point S in this diagram, contains the shells of Recent species before alluded to.

Near the northern end of the Moens Klint, at a place called "Taler," more than 300 feet high, are seen similar folds, so sharp that there is an appearance of four distinct alternations of the glacial and Cretaceous formations in vertical or highly inclined beds; the Chalk at one point bending over so that the position of all the beds is reversed.


1. Chalk with flints. 2. Marine stratified loam, lowest member of glacial formation. 3. Blue clay or till, with erratic blocks unstratified. 4. Yellow sandy till, with pebbles and glaciated boulders. 5. Stratified sand and gravel with erratics.)

But the most wonderful shiftings and faultings of the beds are observable in the Dronningestol part of the same cliff, 400 feet in perpendicular height, where, as shown in Figure 49, the drift is thoroughly entangled and mixed up with the dislocated Chalk.

If we follow the lines of fault, we may see, says M. Puggaard, along the planes of contact of the shifted beds, the marks of polishing and rubbing which the Chalk flints have undergone, as have many stones in the gravel of the drift, and some of these have also been forced into the soft Chalk. The manner in which the top of some of the arches of bent Chalk have been cut off in this and several adjoining sections, attests the great denudation which accompanied the disturbances, portions of the bent strata having been removed, probably while they were emerging from beneath the sea.

M. Puggaard has deduced the following conclusions from his study of these cliffs.

First. The white Chalk, when it was still in horizontal stratification, but after it had suffered considerable denudation, subsided gradually, so that the lower beds of drift Number 2, with their littoral shells, were superimposed on the Chalk in a shallow sea.

Second. The overlying unstratified boulder clays 3 and 4 were thrown down in deeper water by the aid of floating ice coming from the north.

Third. Irregular subsidences then began, and occasionally partial failures of support, causing the bending and sometimes the engulfment of overlying masses both of the Chalk and drift, and causing the various dislocations above described and depicted. The downward movement continued till it exceeded 400 feet, for upon the surface even of Number 5, in some parts of the island, lie huge erratics 20 feet or more in diameter, which imply that they were carried by ice in a sea of sufficient depth to float large icebergs. But these big erratics, says Puggaard, never enter into the fissures as they would have done had they been of date anterior to the convulsions.

Fourth. After this subsidence, the re-elevation and partial denudation of the Cretaceous and glacial beds took place during a general upward movement, like that now experienced in parts of Sweden and Norway.

In regard to the lines of movement in Moen, M. Puggaard believes, after an elaborate comparison of the cliffs with the interior of the island, that they took at least three distinct directions at as many successive eras, all of post-glacial date; the first line running from east-south-east to west-north-west, with lines of fracture at right angles to them; the second running from south-south-east to north-north-west, also with fractures in a transverse direction; and lastly, a sinking in a north and south direction, with other subsidences of contemporaneous date running at right angles or east and west.

When we approach the north-west end of Moens Klint, or the range of coast above described, the strata begin to be less bent and broken, and after travelling for a short distance beyond we find the Chalk and overlying drift in the same horizontal position as at the southern end of the Moens Klint. What makes these convulsions the more striking is the fact that in the other adjoining Danish islands, as well as in a large part of Moen itself, both the Secondary and Tertiary formations are quite undisturbed.

It is impossible to behold such effects of reiterated local movements, all of post-Tertiary date, without reflecting that, but for the accidental presence of the stratified drift, all of which might easily have been missing, where there has been so much denudation, even if it had once existed, we might have referred the verticality and flexures and faults of the rocks to an ancient period, such as the era between the Chalk with flints and the Maestricht Chalk, or to the time of the latter formation, or to the Eocene, or Miocene, or Pliocene eras, even the last of them long prior to the commencement of the glacial epoch. Hence we may be permitted to suspect that in some other regions, where we have no such means at our command for testing the exact date of certain movements, the time of their occurrence may be far more modern than we usually suppose. In this way some apparent anomalies in the position of erratic blocks, seen occasionally at great heights above the parent rocks from which they have been detached, might be explained, as well as the irregular direction of certain glacial furrows like those described by Professor Keilhau and Mr. Horbye on the mountains of the Dovrefjeld in latitude 62 degrees north, where the striation and friction is said to be independent of the present shape and slope of the mountains.* (* "Observations sur les Phenomenes d'Erosion en Norwege" 1857.) Although even in such cases it remains to be proved whether a general crust of continental ice, like that of Greenland described by Rink (see above, Chapter 13), would not account for the deviation of the furrows and striae from the normal directions which they ought to have followed had they been due to separate glaciers filling the existing valleys.

It appears that in general the upward movements in Scandinavia, which have raised sea-beaches containing marine shells of Recent species to the height of several hundred feet, have been tolerably uniform over very wide spaces; yet a remarkable exception to this rule was observed by M. Bravais at Altenfjord in Finmark, between latitude 70 and 71 degrees north. An ancient water-level, indicated by a sandy deposit forming a terrace and by marks of the erosion of the waves, can be followed for 30 miles from south to north along the borders of a fjord rising gradually from a height of 85 feet to an elevation of 220 feet above the sea, or at the rate of about 4 feet in a mile.* (* "Proceedings of the Geological Society" 1845 volume 4 page 94.)

To pass to another and very remote part of the world, we have witnessed so late as January 1855 in the northern island of New Zealand a sudden and permanent rise of land on the northern shores of Cook's Straits, which at one point, called Muko-muka, was so unequal as to amount to 9 feet vertically, while it declined gradually from this maximum of upheaval in a distance of about 23 miles north-west of the greatest rise, to a point where no change of level was perceptible. Mr. Edward Roberts of the Royal Engineers, employed by the British Government at the time of the shock in executing public works on the coast, ascertained that the extreme upheaval of certain ancient rocks followed a line of fault running at least 90 miles from south to north into the interior; and what is of great geological interest, immediately to the east of this fault the country, consisting of Tertiary strata, remained unmoved or stationary; a fact well established by the position of a line of Nullipores marking the sea-level before the earthquake, both on the surface of the Tertiary and Palaeozoic rocks.* (* "Bulletin de la Societe Geologique de France" volume 13 1856 page 660, where I have described the facts communicated to me by Messrs. Roberts and Walter Mantell.)

The repetition of such unequal movements, especially if they recurred at intervals along the same lines of fracture, would in the course of ages cause the strata to dip at a high angle in one direction, while towards the opposite point of the compass they would terminate abruptly in a steep escarpment.

But it is probable that the multiplication of such movements in the post-Tertiary period has rarely been so great as to produce results like those above described in Moen, for the principal movements in any given period seem to be of a more uniform kind, by which the topography of limited districts and the position of the strata are not visibly altered except in their height relatively to the sea. Were it otherwise we should not find conformable strata of all ages, including the primary fossiliferous of shallow-water origin, which must have remained horizontal throughout vast areas during downward movements of several thousand feet going on at the period of their accumulation. Still less should we find the same primary strata, such as the Carboniferous, Devonian, or Silurian, still remaining horizontal over thousands of square leagues, as in parts of North America and Russia, having escaped dislocation and flexure throughout the entire series of epochs which separate Palaeozoic from Recent times. Not that they have been motionless, for they have undergone so much denudation, and of such a kind, as can only be explained by supposing the strata to have been subjected to great oscillations of level, and exposed in some cases repeatedly to the destroying and planing action of the waves of the sea.

It seems probable that the successive convulsions in Moen were contemporary with those upward and downward movements of the glacial period which were described in the thirteenth and some of the following chapters, and that they ended before the upper beds of Number 5, Figure 49, with its large erratic blocks, were deposited, as some of those beds occurring in the disturbed parts of Moen appear to have escaped the convulsions to which Numbers 2, 3, and 4 were subjected. If this be so, the whole derangement, although Pleistocene, may have been anterior to the human epoch, or rather to the earliest date to which the existence of man has as yet been traced back.



Post-glacial Strata containing Remains of Mastodon giganteus in North America. Scarcity of Marine Shells in Glacial Drift of Canada and the United States. Greater southern Extension of Ice-action in North America than in Europe. Trains of Erratic Blocks of vast Size in Berkshire, Massachusetts. Description of their Linear Arrangement and Points of Departure. Their Transportation referred to Floating and Coast Ice. General Remarks on the Causes of former Changes of Climate at successive geological Epochs. Supposed Effects of the Diversion of the Gulf Stream in a Northerly instead of North-Easterly Direction. Development of extreme Cold on the opposite Sides of the Atlantic in the Glacial period not strictly simultaneous. Effect of Marine Currents on Climate. Pleistocene Submergence of the Sahara.

On the North American continent, between the arctic circle and the 42nd parallel of latitude, we meet with signs of ice-action on a scale as grand as, if not grander than, in Europe; and there also the excess of cold appears to have been first felt at the close of the Tertiary, and to have continued throughout a large portion of the Pleistocene period. [Note 36.]

The general absence of organic remains in the North American glacial formation makes it as difficult as in Europe to determine what mammalia lived on the continent at the time of the most intense refrigeration, or when extensive areas were becoming strewed over with glacial drift and erratic blocks, but it is certain that a large proboscidean now extinct, the Mastodon giganteus, Cuv., together with many other quadrupeds, some of them now living and others extinct, played a conspicuous part in the post-glacial era. By its frequency as a fossil species, this pachyderm represents the European Elephas primigenius, although the latter also occurs fossil in the United States and Canada, and abounds, as I learn from Sir John Richardson, in latitudes farther north than those to which the mastodon has been traced.

In the state of New York, the mastodon is not unfrequently met with in bogs and lacustrine deposits formed in hollows in the drift, and therefore, in a geological position, much resembling that of Recent peat and shell-marl in the British Isles, Denmark, or the valley of the Somme, as before described. Sometimes entire skeletons have been discovered within a few feet of the surface, in peaty earth at the bottom of small ponds, which the agriculturists had drained. The shells in these cases belong to freshwater genera, such as Limnaea, Physa, Planorbis, Cyclas, and others, differing from European species, but the same as those now proper to ponds and lakes in the same parts of America.

I have elsewhere given an account of several of these localities which I visited in 1842,* (* "Travels in North America" volume 1 page 55 London 1845; and "Manual of Geology" chapter 12 5th edition page 144.) and can state that they certainly have a more modern aspect than almost all the European deposits in which remains of the mammoth occur, although a few instances are cited of Elephas Primigenius having been dug out of peat in Great Britain. Thus I was shown a mammoth's tooth in the museum at Torquay in Devonshire which is believed to have been dredged up from a deposit of vegetable matter now partially submerged beneath the sea. A more elevated part of the same peaty formation constitutes the bottom of the valley in which Tor Abbey stands. This individual elephant must certainly have been of more modern date than his fellows found fossil in the gravel of the Brixham cave, before described, for it flourished when the physical geography of Devonshire, unlike that of the cave period, was almost identical with that now established.

I cannot help suspecting that many tusks and teeth of the mammoth, said to have been found in peat, may be as spurious as are the horns of the rhinoceros cited more than once in the "Memoirs of the Wernerian Society" as having been obtained from shell-marl in Forfarshire and other Scotch counties; yet, between the period when the mammoth was most abundant and that when it died out, there must have elapsed a long interval of ages when it was growing more and more scarce; and we may expect to find occasional stragglers buried in deposits long subsequent in date to others, until at last we may succeed in tracing a passage from the Pleistocene to the Recent fauna, by geological monuments, which will fill up the gap before alluded to as separating the era of the flint tools of Amiens and Abbeville from that of the peat of the valley of the Somme.

How far the lacustrine strata of North America above mentioned may help to lessen this hiatus, and whether some individuals of the Mastodon giganteus may have come down to the confines of the historical period, is a question not so easily answered as might at first sight be supposed. A geologist might naturally imagine that the fluviatile formation of Goat Island, seen at the falls of Niagara, and at several points below the falls,* (* "Travels in North America" by the author, volume 1 chapter 2 and volume 2 chapter 19.) was very modern, seeing that the fossil shells contained in it are all of species now inhabiting the waters of the Niagara, and seeing also that the deposit is more modern than the glacial drift of the same locality. In fact, the old river bed, in which bones of the mastodon occur, holds the same position relatively to the boulder formation as the strata of shell-marl and bog-earth with bones of mastodon, so frequent in the State of New York, bear to the glacial drift, and all may be of contemporaneous date. But in the case of the valley of the Niagara we happen to have a measure of time which is wanting in the other localities, namely, the test afforded by the recession of the falls, an operation still in progress, by which the deep ravine of the Niagara, 7 miles long, between Queenstown and Goat Island has been hollowed out. This ravine is not only post-glacial, but also posterior in date to the fluviatile or mastodon-bearing beds. The individual therefore found fossil near Goat Island flourished before the gradual excavation of the deep and long chasm, and we must reckon its antiquity, not by thousands, but by tens of thousands of years, if I have correctly estimated the minimum of time which was required for the erosion of that great ravine.* (* "Principles of Geology" 9th edition page 2; and "Travels in North America" volume 1 page 32 1845.)

The stories widely circulated of bones of the mastodon having been observed with their surfaces pierced as if by arrow-heads or bearing the marks of wounds inflicted by some stone implement, must in future be more carefully inquired into, for we can scarcely doubt that the mastodon in North America lived down to a period when the mammoth co-existed with Man in Europe. But I need say no more on this subject, having already explained my views in regard to the evidence of the antiquity of Man in North America when treating of the human bone discovered at Natchez on the Mississippi.

In Canada and the United States we experience the same difficulty as in Europe when we attempt to distinguish between glacial formations of submarine and those of supra-marine origin. In the New World, as in Scotland and England, marine shells of this era have rarely been traced higher than 500 feet above the sea, and 700 feet seems to be the maximum to which at present they are known to ascend. In the same countries, erratic blocks have travelled from north to south, following the same direction as the glacial furrows and striae imprinted almost everywhere on the solid rocks underlying the drift. Their direction rarely deviates more than fifteen degrees east or west of the meridian, so that we can scarcely doubt, in spite of the general dearth of marine shells, that icebergs floating in the sea and often running aground on its rocky bottom were the instruments by which most of the blocks were conveyed to southern latitudes.

There are, nevertheless, in the United States, as in Europe, several groups of mountains which have acted as independent centres for the dispersion of erratics, as, for example, the White Mountains, latitude 44 degrees north, the highest of which, Mount Washington, rises to about 6300 feet above the sea; and according to Professor Hitchcock some of the loftiest of the hills of Massachusetts once sent down their glaciers into the surrounding lower country.


Having treated so fully in this volume of the events of the glacial period, I am unwilling to conclude without laying before the reader the evidence displayed in North America of ice-action in latitudes farther south by about ten degrees than any seen on an equal scale in Europe. This extension southwards of glacial phenomena in regions where there are no snow-covered mountains like the Alps to explain the exception, nor any hills of more than moderate elevation, constitutes a feature of the western as compared to the eastern side of the Atlantic, and must be taken into account when we speculate on the causes of the refrigeration of the northern hemisphere during the Pleistocene period.


A. Canaan range, in the State of New York. The crest consists of green chloritic rock. B. Richmond range, the western division of which consists in Merriman's Mount of the same green rock as A, but in a more schistose form, while the eastern division is composed of slaty limestone. C. The Lenox range, consisting in part of mica-schist, and in some districts of crystalline limestone. d. Knob in the range A, from which most of the train Number 6 is supposed to have been derived. e. Supposed starting point of the train Number 5 in the range A. f. Hiatus of 175 yards, or space without blocks. g. Sherman's House. h. Perry's Peak. k. Flat Rock. l. Merriman's Mount. m. Dupey's Mount. n. Largest block of train, Number 6. See Figures 51 and 52. p. Point of divergence of part of the train Number 6, where a branch is sent off to Number 5. Number 1. The most southerly train examined by Messrs. Hall and Lyell, between Stockbridge and Richmond, composed of blocks of black slate, blue limestone and some of the green Canaan rock, with here and there a boulder of white quartz. Number 2. Train composed chiefly of large limestone masses, some of them divided into two or more fragments by natural joints. Number 3. Train composed of blocks of limestone and the green Canaan rock; passes south of the Richmond Station on the Albany and Boston railway; is less defined than Numbers 1 and 2. Number 4. Train chiefly of limestone blocks, some of them thirty feet in diameter, running to the north-west of the Richmond Station, and passing south of the Methodist Meeting-house, where it is intersected by a railway cutting. Number 5. South train of Dr. Reid, composed entirely of large blocks of the green chloritic Canaan rock; passes north of the Old Richmond Meeting-house, and is three-quarters of a mile north of the preceding train (Number 4). Number 6. The great or principal train (north train of Dr. Reid), composed of very large blocks of the Canaan rock, diverges at p, and unites by a branch with train Number 5. Number 7. A well-defined train of limestone blocks, with a few of the Canaan rock, traced from the Richmond to the slope of the Lenox range.)

In 1852, accompanied by Mr. James Hall, state geologist of New York, author of many able and well-known works on geology and palaeontology, I examined the glacial drift and erratics of the county of Berkshire, Massachusetts, and those of the adjoining parts of the state of New York, a district about 130 miles inland from the Atlantic coast and situated due west of Boston in latitude 42 degrees 25 minutes north. This latitude corresponds in Europe to that of the north of Portugal. Here numerous detached fragments of rock are seen, having a linear arrangement or being continuous in long parallel trains, running nearly in straight lines over hill and dale for distances of 5, 10, and 20 miles, and sometimes greater distances. Seven of the more conspicuous of these trains, from 1 to 7 inclusive, Figure 50, are laid down in the accompanying map or ground plan.* (* This ground plan, and a farther account of the Berkshire erratics was given in an abstract of a lecture delivered by me to the Royal Institution of Great Britain, April 27, 1855 and published in their Proceedings.) It will be remarked that they run in a north-west and south-east direction, or almost transversely to the ranges of hills A, B, and C, which run north-north-east and south-south-west. The crests of these chains are about 800 feet in height above the intervening valleys. The blocks of the northernmost train, Number 7, are of limestone derived from the calcareous chain B; those of the two trains next to the south, Numbers 6 and 5, are composed exclusively in the first part of their course of a green chloritic rock of great toughness, but after they have passed the ridge B, a mixture of calcareous blocks is observed. After traversing the valley for a distance of 6 miles these two trains pass through depressions or gaps in the range C, as they had previously done in crossing the range B, showing that the dispersion of the erratics bears some relation to the acutal inequalities of the surface, although the course of the same blocks is perfectly independent of the more leading features of the geography of the country, or those by which the present lines of drainage are determined. The greater number of the green chloritic fragments in trains 5 and 6 have evidently come from the ridge A, and a large proportion of the whole from its highest summit d, where the crest of the ridge has been worn into those dome-shaped masses called "roches moutonnees," already alluded to, and where several fragments having this shape, some of them 30 feet long, are seen in situ, others only slightly removed from their original position, as if they had been just ready to set out on their travels. Although smooth and rounded on their tops they are angular on their lower parts, where their outline has been derived from the natural joints of the rock. Had these blocks been conveyed from d by glaciers, they would have radiated in all directions from a centre, whereas not one even of the smaller ones is found to the westward of A, though a very slight force would have made them roll down to the base of that ridge, which is very steep on its western declivity. It is clear, therefore, that the propelling power, whatever it may have been, acted exclusively in a south-easterly direction. Professor Hall and I observed one of the green blocks—24 feet long, poised upon another about 19 feet in length. The largest of all on the west flank of m, or Dupey's Mount, called the Alderman, is above 90 feet in diameter, and nearly 300 feet in circumference. We counted at some points between forty and fifty blocks visible at once, the smallest of them larger than a camel.

(FIGURE 51. ERRATIC DOME-SHAPED BLOCK OF COMPACT CHLORITIC ROCK (n in map in Figure 50), near the Richmond Meeting-house, Berkshire, Massachusetts, latitude 42 degrees 25 minutes North. Length, 52 feet; width, 40 feet; height above the soil, 15 feet.)

The annexed drawing (Figure 51) represents one of the best known of train Number 6, being that marked n on the map (Figure 50). According to our measurement it is 52 feet long by 40 in width, its height above the drift in which it is partially buried being 15 feet. At the distance of several yards occurs a smaller block, 3 or 4 feet in height, 20 feet long, and 14 broad, composed of the same compact chloritic rock, and evidently a detached fragment from the bigger mass, to the lower and angular part of which it would fit on exactly. This erratic n has a regularly rounded top, worn and smoothed like the "roches moutonnees" before mentioned, but no part of the attrition can have occurred since it left its parent rock, the angles of the lower portion being quite sharp and unblunted.


a. The large block in Figure 51 and n in the map in Figure 50. b. Fragment detached from the same. c. Unstratified drift with boulders. d. Silurian limestone in inclined stratification.)

From railway cuttings through the drift of the neighbourhood and other artificial excavations, we may infer that the position of the block n, if seen in a vertical section, would be as represented in Figure 52. The deposit c in that section consists of sand, mud, gravel, and stones, for the most part unstratified, resembling the till or boulder clay of Europe. It varies in thickness from 10 to 50 feet, being of greater depth in the valleys. The uppermost portion is occasionally, though rarely, stratified. Some few of the imbedded stones have flattened, polished, striated, and furrowed sides. They consist invariably, like the seven trains above mentioned, of kinds of rock confined to the region lying to the north-west, none of them having come from any other quarter. Whenever the surface of the underlying rock has been exposed by the removal of the superficial detritus, a polished and furrowed surface is seen, like that underneath a glacier, the direction of the furrows being from north-west to south-east, or corresponding to the course of the large erratics.

As all the blocks, instead of being dispersed from a centre, have been carried in one direction and across the ridges A, B, C and the intervening valleys, the hypothesis of glaciers is out of the question. I conceive, therefore, that the erratics were conveyed to the places they now occupy by coast ice, when the country was submerged beneath the waters of a sea cooled by icebergs coming annually from arctic regions.


d, e. Masses of floating ice carrying fragments of rock.)

Suppose the highest peaks of the ridges A, B, C in the annexed diagram (Figure 53) to be alone above water, forming islands, and d e to be masses of floating ice, which drifted across the Canaan and Richmond valleys at a time when they were marine channels, separating islands or rather chains of islands, having a north-north-east and south-south-west direction. A fragment of ice such as d, freighted with a block from A, might run aground and add to the heap of erratics at the north-west base of the island (now ridge) B, or, passing through a sound between B and the next island of the same group, might float on till it reached the channel between B and C. Year after year two such exposed cliffs in the Canaan range as d and e of the map, Figure 50, undermined by the waves, might serve as the points of departure of blocks, composing the trains Numbers 5 and 6. It may be objected that oceanic currents could not always have had the same direction; this may be true, but during a short season of the year when the ice was breaking up the prevailing current may have always run south-east.

If it be asked why the blocks of each train are not more scattered, especially when far from their source, it may be observed that after passing through sounds separating islands, they issued again from a new and narrow starting-point; moreover, we must not exaggerate the regularity of the trains, as their width is sometimes twice as great in one place in as another; and Number 6 sends off a branch at p, which joins Number 5. There are also stragglers, or large blocks here and there in the spaces between the two trains. As to the distance to which any given block would be carried, that must have depended on a variety of circumstances; such as the strength of the current, the direction of the wind, the weight of the block or the quantity and draught of the ice attached to it. The smaller fragments would, on the whole, have the best chance of going farthest; because, in the first place, they were more numerous, and then, being lighter, they required less ice to float them, and would not ground so readily on shoals, or if stranded, would be more easily started again on their travels. Many of the blocks, which at first sight seem to consist of single masses, are found when examined to be made up of two, three, or more pieces divided by natural joints. In the case of a second removal by ice, one or more portions would become detached and be drifted to different points further on. Whenever this happened, the original size would be lessened, and the angularity of the block previously worn by the breakers would be restored, and this tendency to split may explain why some of the far-transported fragments remain very angular.

These various considerations may also account for the fact that the average size of the blocks of all the seven trains laid down on the plan, Figure 50, lessens sensibly in proportion as we recede from the principal points of departure of particular kinds of erratics, yet not with any regularity, a huge block now and then recurring when the rest of the train consists of smaller ones.

All geologists acquainted with the district now under consideration are agreed that the mountain ranges A, B, and c, as well as the adjoining valleys, had assumed their actual form and position before the drift and erratics accumulated on and in them and before the surface of the fixed rocks was polished and furrowed. I have the less hesitation in ascribing the transporting power to coast-ice, because I saw in 1852 an angular block of sandstone, 8 feet in diameter, which had been brought down several miles by ice only three years before to the mouth of the Petitcodiac estuary, in Nova Scotia, where it joins the Bay of Fundy; and I ascertained that on the shores of the same bay, at the South Joggins, in the year 1850, much larger blocks had been removed by coast-ice, and after they had floated half a mile, had been dropped in salt water by the side of a pier built for loading vessels with coal, so that it was necessary at low tide to blast these huge ice-borne rocks with gunpowder in order that the vessels might be able to draw up alongside the pier. These recent exemplifications of the vast carrying powers of ice occurred in latitude 46 degrees north (corresponding to that of Bordeaux), in a bay never invaded by icebergs.

I may here remark that a sheet of ice of moderate thickness, if it extend over a wide area, may suffice to buoy up the largest erratics which fall upon it. The size of these will depend, not on the intensity of the cold but on the manner in which the rock is jointed, and the consequent dimensions of the blocks into which it splits when falling from an undermined cliff.

When I first endeavoured in the "Principles of Geology" in 1830,* (* 1st edition chapter 7; 9th edition ibid.) to explain the causes, both of the warmer and colder climates which have at former periods prevailed on the globe, I referred to successive variations in the height and position of the land and its extent relatively to the sea in polar and equatorial latitudes—also to fluctuations in the course of oceanic currents and other geographical conditions, by the united influence of which I still believe the principal revolutions in the meteorological state of the atmosphere at different geological periods have been brought about. The Gulf Stream was particularly alluded to by me as moderating the winter climate of northern Europe and as depending for its direction on temporary and accidental peculiarities in the shape of the land, especially that of the narrow Straits of Bahama, which a slight modification in the earth's crust would entirely alter.

Mr. Hopkins, in a valuable essay on the causes of former changes of climate,* (* Hopkins, "Quarterly Journal of the Geological Society" volume 8 1852 page 56.) has attempted to calculate how much the annual temperature of Europe would be lowered if this Gulf Stream were turned in some other and new direction, and estimates the amount at about six or seven degrees of Fahrenheit. He also supposes that if at the same time a considerable part of northern and central Europe were submerged, so that a cold current from the arctic seas should sweep over it, an additional refrigeration of three or four degrees would be produced. He has speculated in the same essay on the effects which would be experienced in the eastern hemisphere if the same mighty current of warm water, instead of crossing the Atlantic, were made to run northwards from the Gulf of Mexico through the region now occupied by the valley of the Mississippi, and so onwards to the arctic regions.

After reflecting on what has been said in the thirteenth chapter of the submergence and re-elevation of the British Isles and the adjoining parts of Europe, and the rising and sinking of the Alps and the basins of some of the great rivers flowing from that chain, since the commencement of the glacial period, a geologist will not be disposed to object to the theory above adverted to, on the score of its demanding too much conversion of land into sea, or almost any amount of geographical change in Pleistocene times. But a difficulty of another kind presents itself. We have seen that, during the glacial period, the cold in Europe extended much farther south than it does at present, and in this chapter we have demonstrated that in North America the cold also extended no less than 10 degrees of latitude still farther southwards than in Europe; so that if a great body of heated water, instead of flowing north-eastward, were made to pass through what is now the centre of the American continent towards the Arctic Circle, it could not fail to mitigate the severity of the winter's cold in precisely those latitudes where the cold was greatest and where it has left monuments of ice-action surpassing in extent any exhibited on the European side of the ocean.

In the actual state of the globe, the isothermal lines, or lines of equal winter temperature when traced westward from Europe to North America bend 10 degrees south, there being a marked excess of winter cold in corresponding latitudes west of the Atlantic. During the glacial period, viewing it as a whole, we behold signs of a precisely similar deflection of these same isothermal lines when followed from east to west; so that if, in the hope of accounting for the former severity of glacial action in Europe, we suppose the absence of the Gulf Stream and imagine a current of equivalent magnitude to have flowed due north from the Gulf of Mexico, we introduce, as we have just hinted, a source of heat into precisely that part of the continent where the extreme conditions of refrigeration are most manifest. Viewed in this light, the hypothesis in question would render the glacial phenomena described in the present chapter more perplexing and anomalous than ever. But here another question arises, whether the eras at which the maximum of cold was attained on the opposite sides of the Atlantic were really contemporaneous? We have now discovered not only that the glacial period was of vast duration, but that it passed through various phases and oscillations of temperature; so that, although the chief polishing and furrowing of the rocks and transportation of erratics in Europe and North America may have taken place contemporaneously, according to the ordinary language of geology, or when the same testacea and the same Pleistocene assemblage of mammalia flourished, yet the extreme development of cold on the opposite sides of the ocean may not have been strictly simultaneous, but on the contrary the one may have preceded or followed the other by a thousand or more than a thousand centuries.

It is probable that the greatest refrigeration of Norway, Sweden, Scotland, Wales, the Vosges, and the Alps coincided very nearly in time; but when the Scandinavian and Scotch mountains were encrusted with a general covering of ice, similar to that now enveloping Greenland, this last country may not have been in nearly so glacial a condition as now, just as we find that the old icy crust and great glaciers, which have left their mark on the mountains of Norway and Sweden, have now disappeared, precisely at a time when the accumulation of ice in Greenland is so excessive. In other words, we see that in the present state of the northern hemisphere, at the distance of about 1500 miles, two meridional zones enjoying very different conditions of temperature may co-exist, and we are, therefore, at liberty to imagine some former alternations of colder and milder climates on the opposite sides of the ocean throughout the Pleistocene era of a compensating kind, the cold on the one side balancing the milder temperature on the other. By assuming such a succession of events we can more easily explain why there has not been a greater extermination of species, both terrestrial and aquatic, in polar and temperate regions during the glacial epoch, and why so many species are common to pre-glacial and post-glacial times.

The numerous plants which are common to the temperate zones north and south of the equator have been referred by Mr. Darwin and Dr. Hooker to migrations which took place along mountain chains running from north to south during some of the colder phases of the glacial epoch.* (* Darwin, "Origin of Species" chapter 11 page 365; Hooker, "Flora of Australia" Introduction page 18 1859.) Such an hypothesis enables us to dispense with the doctrine that the same species ever originated independently in two distinct and distant areas; and it becomes more feasible if we admit the doctrine of the co-existence of meridional belts of warmer and colder climate, instead of the simultaneous prevalence of extreme cold both in the eastern and western hemisphere. It also seems necessary, as colder currents of water always flow to lower latitudes, while warmer ones are running towards polar regions, that some such compensation should take place, and that an increase of cold in one region must to a certain extent be balanced by a mitigation of temperature elsewhere.

Sir John F. Herschel, in his recent work on "Physical Geography," when speaking of the open sea which is caused in part of the polar regions by the escape of ice through Behring's Straits, and the flow of warmer water northwards through the same channel, observes that these straits, by which the continents of Asia and North America are now parted, "are only thirty miles broad where narrowest and only twenty-five fathoms in their greatest depth." But "this narrow channel," he adds, "is yet important in the economy of nature, inasmuch as it allows a portion of the circulating water from a warmer region to find its way into the polar basin, aiding thereby not only to mitigate the extreme rigour of the polar cold, but to prevent in all probability a continual accretion of ice, which else might rise to a mountainous height."* (* Herschel's "Physical Geography" page 41 1861.)

Behring's Straits, here alluded to, happen to agree singularly in width and depth with the Straits of Dover, the difference in depth not being more than 3 or 4 feet; so that at the rate of upheaval, which is now going on in many parts of Scandinavia, of 2 1/2 feet in a century, such straits might be closed in 3000 years, and a vast accumulation of ice to the northward commence forthwith.

But, on the other hand, although such an accumulation might spread its refrigerating influence for many miles southwards beyond the new barrier, the warm current which now penetrates through the straits, and which at other times is chilled by floating ice issuing from them, would when totally excluded from all communication with the icy sea have its temperature raised and its course altered, so that the climate of some other area must immediately begin to improve.

There is still another probable cause of a vast change in the temperature of central Europe in comparatively modern times, to which no allusion has yet been made; namely, the conversion of the great desert of the Sahara from sea into land since the commencement of the Pleistocene period. When that vast region was still submerged, no sirocco blowing for days in succession carried its hot blasts from a wide expanse of burning sand across the Mediterranean. The south winds were comparatively cool, allowing the snows of the Alps to augment to an extent which the colossal dimensions of the moraines of extinct glaciers can alone enable us to estimate.

The scope and limits of this volume forbid my pursuing these speculations and reasonings farther; but I trust I have said enough to show that the monuments of the glacial period, when more thoroughly investigated, will do much towards expanding our views as to the antiquity of the fauna and flora now contemporary with Man, and will therefore enable us the better to determine the time at which Man began in the northern hemisphere to form part of the existing fauna. [Note 37.]



Recapitulation of Results arrived at in the earlier Chapters. Ages of Stone and Bronze. Danish Peat and Kitchen-Middens. Swiss Lake-Dwellings. Local Changes in Vegetation and in the wild and domesticated Animals and in Physical Geography coeval with the Age of Bronze and the later Stone Period. Estimates of the positive Date of some Deposits of the later Stone Period. Ancient Division of the Age of Stone of St. Acheul and Aurignac. Migrations of Man in that Period from the Continent to England in Post-Glacial Times. Slow Rate of Progress in barbarous Ages. Doctrine of the superior Intelligence and Endowments of the original Stock of Mankind considered. Opinions of the Greeks and Romans, and their Coincidence with those of the Modern Progressionist.

The ages of stone and bronze, so called by archaeologists, were spoken of in the earlier chapters of this work. That of bronze has been traced back to times anterior to the Roman occupation of Helvetia, Gaul, and other countries north of the Alps. When weapons of that mixed metal were in use, a somewhat uniform civilisation seems to have prevailed over a wide extent of central and northern Europe, and the long duration of such a state of things in Denmark and Switzerland is shown by the gradual improvement which took place in the useful and ornamental arts. Such progress is attested by the increasing variety of the forms, and the more perfect finish and tasteful decoration of the tools and utensils obtained from the more modern deposits of the bronze age, those from the upper layers of peat, for example, as compared to those found in the lower ones. The great number also of the Swiss lake-dwellings of the bronze age (about seventy villages having been already discovered), and the large population which some of them were capable of containing, afford indication of a considerable lapse of time, as does the thickness of the stratum of mud in which in some of the lakes the works of art are entombed. The unequal antiquity, also, of the settlements is occasionally attested by the different degrees of decay which the wooden stakes or piles have undergone, some of them projecting more above the mud than others, while all the piles of the antecedent age of stone have rotted away quite down to the level of the mud, such part of them only as was originally driven into the bed of the lake having escaped decomposition.* (* Troyon, "Habitations lacustres" Lausanne 1860.)

Among the monuments of the stone period, which immediately preceded that of bronze, the polished hatchets called celts are abundant, and were in very general use in Europe before metallic tools were introduced. We learn, from the Danish peat and shell-mounds, and from the older Swiss lake-settlements, that the first inhabitants were hunters who fed almost entirely on game, but their food in after ages consisted more and more of tamed animals and still later a more complete change to a pastoral state took place, accompanied as population increased by the cultivation of some cereals.

Both the shells and quadrupeds belonging to the later stone period and to the age of bronze consist exclusively of species now living in Europe, the fauna being the same as that which flourished in Gaul at the time when it was conquered by Julius Caesar, even the Bos primigenius, the only animal of which the wild type is lost, being still represented, according to Cuvier, Bell, and Rutimeyer, by one of the domesticated races of cattle now in Europe.

These monuments, therefore, whether of stone or bronze, belong to what I have termed geologically the Recent period, the definition of which some may think rather too dependent on negative evidence, or on the non-discovery hitherto of extinct mammalia, such as the mammoth, which may one day turn up in a fossil state in some of the oldest peaty deposits, as indeed it is already said to have done at some spots, though I have failed as yet to obtain authentic evidence of the fact.* (* A molar of E. primigenius, in a very fresh state, in the museum at Torquay, believed to have been washed up by the waves of the sea out of the submerged mass of vegetable matter at the extremity of the valley in which Tor Abbey stands, is the best case I have seen. See above, Chapter 18.) No doubt some such exceptional cases may be met with in the course of future investigations, for we are still imperfectly acquainted with the entire fauna of the age of stone in Denmark as we may infer from an opinion expressed by Steenstrup, that some of the instruments exhumed by antiquaries from the Danish peat are made of the bones and horns of the elk and reindeer. Yet no skeleton or uncut bone of either of those species has hitherto been observed in the same peat.

Nevertheless, the examination made by naturalists of the various Danish and Swiss deposits of the Recent period has been so searching, that the finding in them of a stray elephant or rhinoceros, should it ever occur, would prove little more than that some few individuals lingered on, when the species was on the verge of extinction, and such rare exceptions would not render the classification above proposed inappropriate.

At the time when many wild quadrupeds and birds were growing scarce and some of them becoming locally extirpated in Denmark, great changes were taking place in the vegetation. The pine, or Scotch fir, buried in the oldest peat, gave place at length to the oak, and the oak, after flourishing for ages, yielded in its turn to the beech, the periods when these three forest trees predominated in succession tallying pretty nearly with the ages of stone, bronze, and iron in Denmark. In the same country also, during the stone period, various fluctuations, as we have seen, occurred in physical geography. Thus, on the ocean side of certain islands, the old refuse-heaps, or "kitchen-middens," were destroyed by the waves, the cliffs having wasted away, while on the side of the Baltic, where the sea was making no encroachment or where the land was sometimes gaining on the sea, such mounds remained uninjured. It was also shown that the oyster, which supplied food to the primitive people, attained its full size in parts of the Baltic where it cannot now exist owing to a want of saltness in the water, and that certain marine univalves and bivalves, such as the common periwinkle, mussel, and cockle, of which the castaway shells are found in the mounds, attained in the olden time their full dimensions, like the oysters, whereas the same species, though they still live on the coast of the inland sea adjoining the mounds, are dwarfed and never half their natural size, the water being rendered too fresh for them by the influx of so many rivers.

Some archaeologists and geologists of merit have endeavoured to arrive at positive dates, or an exact estimate of the minimum of time assignable to the later age of stone. These computations have been sometimes founded on changes in the level of the land, or on the increase of peat, as in the Danish bogs, or on the conversion of water into land by alluvial deposits, since certain lake-settlements in Switzerland were abandoned. Alterations also in the geographical distribution or preponderance of certain living species of animals and plants have been taken into account in corroboration, as have the signs of progress in human civilisation, as serving to mark the lapse of time during the stone and bronze epochs.

M. Morlot has estimated with care the probable antiquity of three superimposed vegetable soils cut open at different depths in the delta of the Tiniere, each containing human bones or works of art, belonging successively to the Roman, bronze, and later stone periods. According to his estimate, an antiquity of 7000 years at least must be assigned to the oldest of these remains, though believed to be long posterior in date to the time when the mammoth and other extinct mammalia flourished together with Man in Europe. Such computations of past time must be regarded as tentative in the present state of our knowledge and much collateral evidence will be required to confirm them; yet the results appear to me already to afford a rough approximation to the truth.

Between the newer or Recent division of the stone period and the older division, which has been called the Pleistocene, there was evidently a vast interval of time—a gap in the history of the past, into which many monuments of intermediate date will one day have to be intercalated. Of this kind are those caves in the south of France, in which M. Lartet has lately found bones of the reindeer, associated with works of art somewhat more advanced in style than those of St. Acheul or of Aurignac. In the valley of the Somme we have seen that peat exists of great thickness, containing in its upper layers Roman and Celtic memorials, the whole of which has been of slow growth, in basins or depressions conforming to the present contour and drainage levels of the country, and long posterior in date to older gravels, containing bones of the mammoth and a large number of flint implements of a very rude and antique type. Some of those gravels were accumulated in the channels of rivers which flowed at higher levels by 100 feet than the present streams, and before the valley had attained its present depth and form. No intermixture has been observed in those ancient river beds of any of the polished weapons, called "celts," or other relics of the more modern times, or of the second or Recent stone period, nor any interstratified peat; and the climate of those Pleistocene ages, when Man was a denizen of the north-west of France and of southern and central England, appears to have been much more severe in winter than it is now in the same region, though far less cold than in the glacial period which immediately preceded.

We may presume that the time demanded for the gradual dying out or extirpation of a large number of wild beasts which figure in the Pleistocene strata and are missing in the Recent fauna was of protracted duration, for we know how tedious a task it is in our own times, even with the aid of fire-arms, to exterminate a noxious quadruped, a wolf, for example, in any region comprising within it an extensive forest or a mountain chain. In many villages in the north of Bengal, the tiger still occasionally carries off its human victims, and the abandonment of late years by the natives of a part of the Sunderbunds or lower delta of the Ganges, which they once peopled, is attributed chiefly to the ravages of the tiger. It is probable that causes more general and powerful than the agency of Man, alterations in climate, variations in the range of many species of animals, vertebrate and invertebrate, and of plants, geographical changes in the height, depth, and extent of land and sea, some or all of these combined, have given rise in a vast series of years to the annihilation, not only of many large mammalia, but to the disappearance of the Cyrena fluminalis, once common in the rivers of Europe, and to the different range or relative abundance of other shells which we find in the European drifts.

That the growing power of Man may have lent its aid as the destroying cause of many Pleistocene species, must, however, be granted; yet, before the introduction of fire-arms, or even the use of improved weapons of stone, it seems more wonderful that the aborigines were able to hold their own against the cave-lion, hyaena, and wild bull, and to cope with such enemies, than that they failed to bring about their speedy extinction.

It is already clear that Man was contemporary in Europe with two species of elephant, now extinct, E. primigenius and E. antiquus, two also of rhinoceros, R. tichorhinus and R. hemitoechus (Falc.), at least one species of hippopotamus, the cave-bear, cave-lion, and cave-hyaena, various bovine, equine, and cervine animals now extinct, and many smaller Carnivora, Rodentia, and Insectivora. While these were slowly passing away, the musk ox, reindeer, and other arctic species which have survived to our times were retreating northwards from the valleys of the Thames and Seine to their present more arctic haunts.

The human skeletons of the Belgian caverns of times coeval with the mammoth and other extinct mammalia do not betray any signs of a marked departure in their structure, whether of skull or limb, from the modern standard of certain living races of the human family. As to the remarkable Neanderthal skeleton (Chapter 5), it is at present too isolated and exceptional, and its age too uncertain, to warrant us in relying on its abnormal and ape-like characters, as bearing on the question whether the farther back we trace Man into the past, the more we shall find him approach in bodily conformation to those species of the anthropoid quadrumana which are most akin to him in structure.

In the descriptions already given of the geographical changes which the British Isles have undergone since the commencement of the glacial period (as illustrated by several maps, Figures 39 to 41), it has been shown that there must have been a free communication by land between the Continent and these islands, and between the several islands themselves, within the Pleistocene epoch, in order to account for the Germanic fauna and flora having migrated into every part of the area, as well as for the Scandinavian plants and animals to have retreated into the higher mountains. During some part of the Pleistocene ages, the large pachyderms and accompanying beasts of prey, now extinct, wandered from the Continent to England; and it is highly probable that France was united with some part of the British Isles as late as the period of the gravels of St. Acheul and the era of those engulfed rivers which, in the basin of the Meuse near Liege, swept into many a rent and cavern the bones of Man and of the mammoth and cave-bear. There have been vast geographical revolutions in the times alluded to, and oscillations of land, during which the English Channel, which can be shown by the Pagham erratics and the old Brighton beach (Chapter 14), to be of very ancient origin, may have been more than once laid dry and again submerged. During some one of these phases, Man may have crossed over, whether by land or in canoes, or even on the ice of a frozen sea (as Mr. Prestwich has hinted), for the winters of the period of the higher-level gravels of the valley of the Somme were intensely cold.

The primitive people, who co-existed with the elephant and rhinoceros in the valley of the Ouse at Bedford, and who made use of flint tools of the Amiens type, certainly inhabited part of England which had already emerged from the waters of the glacial sea and the fabricators of the flint tools of Hoxne, in Suffolk, were also, as we have seen, post-glacial. We may likewise presume that the people of Pleistocene date, who have left their memorials in the valley of the Thames, were of corresponding antiquity, posterior to the boulder clay but anterior to the time when the rivers of that region had settled into their present channels.

The vast distance of time which separated the origin of the higher and lower gravels of the valley of the Somme, both of them rich in flint implements of similar shape (although those of oval form predominate in the newer gravels), leads to the conclusion that the state of the arts in those early times remained stationary for almost indefinite periods. There may, however, have been different degrees of civilisation and in the art of fabricating flint tools, of which we cannot easily detect the signs in the first age of stone, and some contemporary tribes may have been considerably in advance of others. Those hunters, for example, who feasted on the rhinoceros and buried their dead with funeral rites at Aurignac may have been less barbarous than the savages of St. Acheul, as some of their weapons and utensils have been thought to imply. To a European who looks down from a great eminence on the products of the humble arts of the aborigines of all times and countries, the stone knives and arrows of the Red Indian of North America, the hatchets of the native Australian, the tools found in the ancient Swiss lake-dwellings or those of the Danish kitchen-middens and of St. Acheul, seem nearly all alike in rudeness and very uniform in general character. The slowness of the progress of the arts of savage life is manifested by the fact that the earlier instruments of bronze were modelled on the exact plan of the stone tools of the preceding age, although such shapes would never have been chosen had metals been known from the first. The reluctance or incapacity of savage tribes to adopt new inventions has been shown in the East by their continuing to this day to use the same stone implements as their ancestors, after that mighty empires, where the use of metals in the arts was well known, had flourished for three thousand years in their neighbourhood.

We see in our own times that the rate of progress in the arts and sciences proceeds in a geometrical ratio as knowledge increases, and so when we carry back our retrospect into the past, we must be prepared to find the signs of retardation augmenting in a like geometrical ratio; so that the progress of a thousand years at a remote period may correspond to that of a century in modern times, and in ages still more remote Man would more and more resemble the brutes in that attribute which causes one generation exactly to imitate in all its ways the generation which preceded it.

The extent to which even a considerably advanced state of civilisation may become fixed and stereotyped for ages, is the wonder of Europeans who travel in the East. One of my friends declared to me, that whenever the natives expressed to him a wish "that he might live a thousand years," the idea struck him as by no means extravagant, seeing that if he were doomed to sojourn for ever among them, he could only hope to exchange in ten centuries as many ideas, and to witness as much progress as he could do at home in half a century.

It has sometimes happened that one nation has been conquered by another less civilised though more warlike, or that during social and political revolutions, people have retrograded in knowledge. In such cases, the traditions of earlier ages, or of some higher and more educated caste which has been destroyed, may give rise to the notion of degeneracy from a primaeval state of superior intelligence, or of science supernaturally communicated. But had the original stock of mankind been really endowed with such superior intellectual powers and with inspired knowledge and had possessed the same improvable nature as their posterity, the point of advancement which they would have reached ere this would have been immeasurably higher. We cannot ascertain at present the limits, whether of the beginning or the end, of the first stone period when Man co-existed with the extinct mammalia, but that it was of great duration we cannot doubt. During those ages there would have been time for progress of which we can scarcely form a conception, and very different would have been the character of the works of art which we should now be endeavouring to interpret—those relics which we are now disinterring from the old gravel-pits of St. Acheul, or from the Liege caves. In them, or in the upraised bed of the Mediterranean, on the south coast of Sardinia, instead of the rudest pottery or flint tools so irregular in form as to cause the unpractised eye to doubt whether they afford unmistakable evidence of design, we should now be finding sculptured forms surpassing in beauty the masterpieces of Phidias or Praxiteles; lines of buried railways or electric telegraphs from which the best engineers of our day might gain invaluable hints; astronomical instruments and microscopes of more advanced construction than any known in Europe, and other indications of perfection in the arts and sciences such as the nineteenth century has not yet witnessed. Still farther would the triumphs of inventive genius be found to have been carried, when the later deposits, now assigned to the ages of bronze and iron, were formed. Vainly should we be straining our imaginations to guess the possible uses and meaning of such relics—machines, perhaps, for navigating the air or exploring the depths of the ocean, or for calculating arithmetical problems beyond the wants or even the conception of living mathematicians.

The opinion entertained generally by the classical writers of Greece and Rome, that Man in the first stage of his existence was but just removed from the brutes, is faithfully expressed by Horace in his celebrated lines, which begin:—

Quum prorepserunt primis animalia terris.—Sat. lib. 1, 3, 99.

The picture of transmutation given in these verses, however severe and contemptuous the strictures lavishly bestowed on it by Christian commentators, accords singularly with the train of thought which the modern doctrine of progressive development has encouraged.

"When animals," he says, "first crept forth from the newly formed earth, a dumb and filthy herd, they fought for acorns and lurking-places with their nails and fists, then with clubs, and at last with arms, which, taught by experience, they had forged. They then invented names for things and words to express their thoughts, after which they began to desist from war, to fortify cities and enact laws." They who in later times have embraced a similar theory, have been led to it by no deference to the opinions of their pagan predecessors, but rather in spite of very strong prepossessions in favour of an opposite hypothesis, namely, that of the superiority of their original progenitors, of whom they believe themselves to be the corrupt and degenerate descendants.

So far as they are guided by palaeontology, they arrive at this result by an independent course of reasoning; but they have been conducted partly to the same goal as the ancients by ethnological considerations common to both, or by reflecting in what darkness the infancy of every nation is enveloped and that true history and chronology are the creation, as it were, of yesterday.



Antiquity and Persistence in Character of the existing Races of Mankind. Theory of their Unity of Origin considered. Bearing of the Diversity of Races on the Doctrine of Transmutation. Difficulty of defining the Terms "Species" and "Race." Lamarck's Introduction of the Element of Time into the Definition of a Species. His Theory of Variation and Progression. Objections to his Theory, how far answered. Arguments of modern Writers in favour of Progression in the Animal and Vegetable World. The old Landmarks supposed to indicate the first Appearance of Man, and of different Classes of Animals, found to be erroneous. Yet the Theory of an advancing Series of Organic Beings not inconsistent with Facts. Earliest known Fossil Mammalia of low Grade. No Vertebrata as yet discovered in the oldest Fossiliferous Rocks. Objections to the Theory of Progression considered. Causes of the Popularity of the Doctrine of Progression as compared to that of Transmutation.

When speaking in a former work of the distinct races of mankind,* (* "Principles of Geology" 7th edition page 637, 1847; see also 9th edition page 660.) I remarked that, "if all the leading varieties of the human family sprang originally from a single pair" (a doctrine, to which then, as now, I could see no valid objection), "a much greater lapse of time was required for the slow and gradual formation of such races as the Caucasian, Mongolian, and Negro, than was embraced in any of the popular systems of chronology."

In confirmation of the high antiquity of two of these, I referred to pictures on the walls of ancient temples in Egypt, in which, a thousand years or more before the Christian era, "the Negro and Caucasian physiognomies were portrayed as faithfully, and in as strong contrast, as if the likenesses of these races had been taken yesterday." In relation to the same subject, I dwelt on the slight modification which the Negro has undergone, after having been transported from the tropics and settled for more than two centuries in the temperate climate of Virginia. I therefore concluded that, "if the various races were all descended from a single pair, we must allow for a vast series of antecedent ages, in the course of which the long-continued influence of external circumstances gave rise to peculiarities increased in many successive generations and at length fixed by hereditary transmission."

So long as physiologists continued to believe that Man had not existed on the earth above six thousand years, they might with good reason withhold their assent from the doctrine of a unity of origin of so many distinct races but the difficulty becomes less and less, exactly in proportion as we enlarge our ideas of the lapse of time during which different communities may have spread slowly, and become isolated, each exposed for ages to a peculiar set of conditions, whether of temperature, or food, or danger, or ways of living. The law of the geometrical rate of the increase of population which causes it always to press hard on the means of subsistence, would ensure the migration in various directions of offshoots from the society first formed abandoning the area where they had multiplied. But when they had gradually penetrated to remote regions by land or water—drifted sometimes by storms and currents in canoes to an unknown shore—barriers of mountains, deserts, or seas, which oppose no obstacle to mutual intercourse between civilised nations, would ensure the complete isolation for tens or thousands of centuries of tribes in a primitive state of barbarism.

Some modern ethnologists, in accordance with the philosophers of antiquity, have assumed that men at first fed on the fruits of the earth, before even a stone implement or the simplest form of canoe had been invented. They may, it is said, have begun their career in some fertile island in the tropics, where the warmth of the air was such that no clothing was needed and where there were no wild beasts to endanger their safety. But as soon as their numbers increased they would be forced to migrate into regions less secure and blest with a less genial climate. Contests would soon arise for the possession of the most fertile lands, where game or pasture abounded and their energies and inventive powers would be called forth, so that at length they would make progress in the arts.

But as ethnologists have failed, as yet, to trace back the history of any one race to the area where it originated, some zoologists of eminence have declared their belief that the different races, whether they be three, five, twenty, or a much greater number (for on this point there is an endless diversity of opinion),* (* See "Transactions of the Ethnological Society" volume 1 1861.) have all been primordial creations, having from the first been stamped with the characteristic features, mental and bodily, by which they are now distinguished, except where intermarriage has given rise to mixed or hybrid races. Were we to admit, say they, a unity of origin of such strongly marked varieties as the Negro and European, differing as they do in colour and bodily constitution, each fitted for distinct climates and exhibiting some marked peculiarities in their osteological, and even in some details of cranial and cerebral conformation, as well as in their average intellectual endowments—if, in spite of the fact that all these attributes have been faithfully handed down unaltered for hundreds of generations, we are to believe that, in the course of time, they have all diverged from one common stock, how shall we resist the arguments of the transmutationist, who contends that all closely allied species of animals and plants have in like manner sprung from a common parentage, albeit that for the last three or four thousand years they may have been persistent in character? Where are we to stop, unless we make our stand at once on the independent creation of those distinct human races, the history of which is better known to us than that of any of the inferior animals?

So long as Geology had not lifted up a part of the veil which formerly concealed from the naturalist the history of the changes which the animate creation had undergone in times immediately antecedent to the Recent period, it was easy to treat these questions as too transcendental, or as lying too far beyond the domain of positive science to require serious discussion. But it is no longer possible to restrain curiosity from attempting to pry into the relations which connect the present state of the animal and vegetable worlds, as well as of the various races of mankind, with the state of the fauna and flora which immediately preceded.

In the very outset of the inquiry, we are met with the difficulty of defining what we mean by the terms "species" and "race;" and the surprise of the unlearned is usually great, when they discover how wide is the difference of opinion now prevailing as to the significance of words in such familiar use. But, in truth, we can come to no agreement as to such definitions, unless we have previously made up our minds on some of the most momentous of all the enigmas with which the human intellect ever attempted to grapple.

Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse