Scientific American Supplement, No. 401, September 8, 1883
Author: Various
Previous Part     1  2  3
Home - Random Browse

These extraordinary fragments were brought to England by Mr. Shapira, of Jerusalem, a well known bookseller and dealer in antiquities. Mr. Shapira's name will be remembered in connection with certain archaeological problems which have been solved by some scholars in a manner not altogether creditable to his sagacity.

The Moabite pottery which reached Europe through Mr. Shapira's agency and is deposited in the Museum at Berlin is now commonly regarded as a modern forgery; but of this forgery, if it be one, it is asserted that Mr. Shapira was the dupe and not the accomplice. The leathern fragments now produced by Mr. Shapira were, as he alleges, obtained by him from certain Arabs near Dibon, the neighborhood where the Moabite stone was discovered. The agent employed by him in their purchase was an Arab "who would steal his mother-in-law for a few piastres," and who would probably be even less scrupulous about a few blackened slips of ancient or modern sheepskin. The value placed by Mr. Shapira on the fragments is, however, a cool million sterling, and at this price they are offered to the British Museum, where they have been temporarily deposited for examination.

Dr. Ginsburg, the well-known Semitic scholar—whose receipt of a grant of L500 from the Prime Minister toward the production of his important work on the "Massorah" we announced with much satisfaction yesterday—is now busily engaged in deciphering the contents of the fragments and examining their genuineness. On this latter question we refrain from pronouncing an opinion. When Dr. Ginsburg's report appears, we shall be able to judge whether these extraordinary fragments are really 2,500 years old, or have been compiled within the last few years.

No complete account of the contents of the fragments can yet be given. To decipher them is a work of time and of infinite patience and skill, as will readily be inferred from the account we have given above of the appearance and condition of the slips. But enough has been deciphered to show that the text employed in them exhibits discrepancies of the most remarkable and important character as compared with that of the received version of the Mosaic books.

In the first verse of the ninth chapter of Deuteronomy, where the received version reads, "Thou art to pass over Jordan this day, to go in to possess nations greater and mightier than thyself," the corresponding passage of the fragments substitutes the plural for the singular, "Ye" for '"Thou," while for "g'dolim," the word translated "greater," it reads "rabbim." But a far more complete idea of the variations of text and signification may be obtained from a comparison of the text of the Decalogue as it appears in the received version in the sixth chapter of Deuteronomy with that contained in the fragments so far as they have yet been deciphered. The version of the fragments, literally rendered, runs as follows:

"I am God, thy God, which liberated thee from the land of Egypt, from the house of bondage. Ye shall have no other gods. Ye shall not make to yourselves any graven image, nor any likeness that is in heaven above or that is in the earth beneath, or that is in the waters under the earth. Ye shall not bow down to them nor serve them. I am God, your God. Sanctify ... in six days I have made the heaven and the earth, and all that is therein, and rested on the seventh day, therefore rest thou also, thou and thy cattle and all that thou hast: I am God, thy God. Honor thy father and thy mother ...: I am God, thy God. Thou shall not kill the person of thy brother: I am God, thy God. Thou shalt not commit adultery with the wife of thy neighbor: I am God, thy God. Thou shalt not steal the property of thy brother: I am God, thy God. Thou shalt not swear by my name falsely, for I visit the iniquity of the fathers upon the children unto the third and fourth generation of those who take my name in vain: I am God, thy God. Thou shalt not bear false witness against thy brother: I am God, thy God. Thou shalt not covet the wife ... or his manservant, or his maidservant, or anything that is his: I am God, thy God. Thou shalt not hate thy brother in thy heart: I am God, thy God. These ten words (or commandments) God spake."

Several points may be noted in this version. The singular refrain "I am God, thy God"—which does not appear at all in the received version—occurs ten times, being, as it were, a solemn ratification of the Divine sanction given at the end of each separate precept. If this be so, the first two commandments, as they are commonly reckoned, are here fused into one, and the tenth place is taken by a commandment which does not appear in the received version of the Decalogue.

It will further be observed that the distinctive Jewish name for the Almighty, "Jehovah," or "the Lord," does not appear at all, the familiar phrase of the received version, "the Lord thy God," being replaced throughout by "God, thy God."

On the many variations in arrangement and detail we need not dwell; they speak for themselves. But we have quoted enough to show that these fragments present problems of the utmost importance and interest both to criticism and exegesis, unless, indeed, they are to be regarded as the ingenious fabrications of some Oriental Ireland, who, knowing the interest felt by scholars in variations of the Sacred Text, has set himself, with infinite pains and skill, to forestall a growing demand. Until this preliminary question is resolved to the satisfaction of all competent scholars, no further questions need be raised. In any case the prima facie presumption must be held to be enormously against the genuineness of the fragments. Such a presumption rests on the improbability of finding manuscripts older by at least sixteen centuries than any extant manuscripts of the same text, on the comparative ease with which such fragments can be forged, and on the powerful motives to such forgery attested by the price placed by Mr. Shapira on his property.

All that we know of the provenance of the fragments is that Mr. Shapira obtained them from an Arab of doubtful character; and that Arabs of doubtful character have driven a splendid trade in Moabite antiquities ever since the discovery of the Moabite stone. On the other hand, the forger, if forgery there be, is assuredly no clumsy and ignorant bungler, as the makers of the Moabite pottery were confidently alleged to be by those who disputed its genuineness. It is, of course, part of his craft, and not, perhaps, much more than the 'prentice part, to give to the sheepskins on which the text is inscribed an appearance of immemorial antiquity. But a good deal more than the skill required to make a new sheepskin look like an old one has gone to the production of Mr. Shapira's fragments. If they are forged, the fabricator must have known what scholars would be likely to expect in genuine fragments, and have set himself to fulfill their expectations. In these days of scientific palaeography and minute textual scholarship no forger of ancient manuscripts could hope to take in scholars unless he were a scholar himself. Variations of text would be looked for as a matter of course; palaeographical accuracy would be exacted to the minutest turn of a letter. Now, to vary a text so as to furnish a different recension without betraying ignorance or solecism requires scholarship of no mean order, while it is very far from an easy thing to write currently in an archaic and unfamiliar character in such a manner as to deceive experts in palaeography. But the fabricator of these fragments, if fabricated they are, has attempted and accomplished a good deal more than this. He has in some cases produced two identical texts written in different hands, both preserving unimpaired the archaic character of the letters. This implies either the employment of two scribes or else an almost incredible skill in the single scribe employed, and in either case it doubles the probability of detection. If, moreover, the supposed fabricator is also himself the scribe, it is evident that he is not only a very ingenious artist, but also a very accomplished scholar, and one can only regret that he has engaged in an industry which has placed him at the mercy of an Arab who would steal his mother-in-law for a few piastres, and is likely, therefore, to enrich no one but Mr. Shapira. We should expect to find, however, that his extraordinary ingenuity has at some point or another overreached itself. Familiar as he must be with the labors of modern Biblical critics—for otherwise he would hardly have ventured to impose upon them—it would be strange if he were not betrayed into some more or less suspicious coincidences with them. In any case, the problem presented by the fragments is one of profound interest, and the whole world of letters will resound with the controversy they are certain to excite.—London Times.

* * * * *

* * * * *


Since the failure last August of the Cape Commercial Bank there has been much depression in South Africa. Ostrich farming, in common with other enterprises, has suffered. Before the crisis a pair of breeding ostriches have been sold for 350 l., now they would not realize 50 l.

The resolution of the Government of South Australia to encourage ostrich breeding came in very opportunely for the Cape dealers, and one or two cargoes of birds have been shipped for Adelaide. The climate of the two colonies is very similar, and the locality selected for the imported birds (the Musgrave Ranges) resembles in dryness and temperature their native habitat.

The first sketch opposite represents the ostriches bidding farewell to their South African home. "The dear old farm where we were reared, good-by!"

One of the boxes, while being slung from the cart to the hold, got into a slanting position. This frightened one of the two inmates, a fine cock. He kicked so hard that he burst open the door of his cage, which was, of course, instantly lowered on deck. Fortunately there was there a gentleman who understood how to handle ostriches. He instantly seized him before he could do himself or the bystanders any injury, and after a brief struggle prevailed on him to re-enter his box. When released in the hold he became quite quiet, and ate his first meal on board ship with a relish.

After being taken out of their boxes the birds are allowed to take a little exercise just to make themselves at home, and are then arranged in wooden kraals, of which there are two hundred on board the vessel. The ostriches are induced to move from one place to another by catching hold of their bodies, and using a little gentle force.

The last sketch represents their first meal on board after a fast of thirty hours. Apple melons were chopped up for them by their "steward," who was to accompany them to Australia. It was curious to see a bird swallow a great lump and then to watch the lump working slowly down the animal's long neck. On the voyage they would be fed with maize or mealies, onions, apple melons, and barley. They require very little water; however, there were five large iron tanks on board in case they would feel thirsty. Our engravings are from sketches by Mr. Dennis Edwards, of Hoff Street, Capetown,

* * * * *


An ordinary weathercock provided with datum points may, in the majority of cases, suffice for the observation of the wind during the day; but recourse has to be had to different means to obtain an automatic transmission of the indications of the vane to the inside of a building. The different systems employed for such a purpose consist of gearings, or are accompanied by a friction that notably diminishes the sensitiveness of the apparatus, especially when the rod has to traverse several stories. Mr. Emile Richard, inspector of the Versailles waterworks, has just devised an ingenious system which, while considerably reducing the weight of the movable part, allows the weathercock to preserve all its sensitiveness. This apparatus consists of two principal parts—one fixed and the other movable. The stationary part is designated in the accompanying figure by the letters A and B and by cross-hatchings. This forms the rod or support. An iron tube, T, with clamps, P, at its lower extremity forms the base of the apparatus, and is hidden, after the mounting of the apparatus, by the ornamental zinc covering, Z. The upper part of the tube carries a shoulder-piece, upon which rests a bronze platform, E, and which is slightly inclined outwardly to prevent the accumulation of water on it. Over the platform there move three crystal balls, which are held and guided by a horizontal disk movable around the stationary tube.

The movable portion, designed to receive the action of the wind and to indicate its direction, is designated by the letters C D and coarse lines. It consists of (1) a zinc tube, K, provided at intervals with copper rings, and entering the rod, A B, which serves as a guide for it; (2) of a bronze disk covered by an external ornament, O, fixed to the tube and resting on the balls; (3) of the vane, G, properly so called; and (4) of the cap, C, provided with bayonet catch, crowning the tube and covering the point of attachment of the wire of transmission. This latter consists of a simple brass or galvanized iron wire, f f, perfectly taut, and made fast in the top of the tube. After traversing as many stories as necessary this wire terminates, in the interior of the room where the observations are made, in a copper rod to which is fastened a horizontal arrow, F. The wire traverses the floorings through small zinc tubes; and, in the rooms through which it passes, it is protected by iron tubes. To the ceiling of the observing room there is affixed a wind-rose, R, on which the arrow reproduces all the motions of the vane.

This apparatus is now in operation in the different stations that the Versailles waterworks has established near the reservoirs of the plateau of Trappes, and it is also installed in several primary normal schools, where it is giving very good results.—La Nature.

* * * * *


A correspondent of the Ohio Farmer reports an experiment in curing clover, showing how he just missed breeding fire in his barn, and illustrating the importance of ventilating hay mows:

In 1861 I used a horse fork for the first time. The haying season was not a bright one, and our clover was drawn a little greener than usual, and went into the mow in large and compact forkfuls. The result was intense heating, and consequently very rapid evaporation and sweating of the mow. On a bay holding ordinarily twenty tons we put at least thirty tons, as every load at the top seemed to make room for another. The barn was rather open, which allowed quite free evaporation on all sides as well as at the top. The result was that I had very bright and excellent hay at the bottom, top, and sides of that mow, but severals tons in the center were as completely charred as though burned in a coal pit. What prevented combustion has always been a mystery to me. Since that escape from a conflagration, I have not deemed it prudent to put clover in so green as to cause intense heating, or to fill a mow too rapidly. If we haul six loads per day to one mow, weighing thirty hundred each, which will shrink during the sweating process to one ton each, we have three tons of water to be thrown off by evaporation.

If we continue to put on six loads per day until the mow is full, the principal part of that moisture must rise through the entire mass. To relieve the hay of moisture, I deem it best to have several places of storage, and change daily or semi-daily from one to the other, thus giving time for a share of the moisture to pass off. To facilitate this evaporation and prevent the hay from reabsorbing it and becoming musty, the best of ventilation is necessary. Ventilation above a clover mow is as necessary as it is above a sugar or fruit evaporator. If there is not open space and draught sufficient to carry away the moisture, it is returned to the mow, and mould is the inevitable result. No ordinary amount of drying will prevent hay from becoming musty if ventilation is shut off during the sweating process. If a hole is cut through the floor at the bottom of the mow near the center and under a ventilator in the roof and a barrel placed over it and drawn up as the hay is mowed in, thus leaving a hole from bottom to top, evaporation will be facilitated and the quality of the hay improved. Salt thrown on, as the clover is put in, to the amount of two or three quarts to the ton, will make it a relish with stock.

* * * * *


(Agave victoriae-reginae.)

This beautiful Agave is now in blossom in the garden here, and I am happy to be able to send you photographs of it. This is the first time it has ever blossomed in cultivation, and it has never been seen in flower in a wild state. It is a mature native-grown specimen, dense in habit, and perfectly semi-spherical in form, and the leaves are arranged in spiral fashion with as much regularity as those of a screw pine. The circumference of the plant is 5 ft. 1 in., and it has 268 leaves. Its flower-stem appeared about the middle of June, grew rather fast till it was 7 ft. high, then rather slowly till it reached its full development. The scape is now 10 ft. 4 in. high above the plant, 61/2 in. in circumference at the base, or 51/4 in. at a foot above the base; from there it tapers very gradually till near the apex. The flower-spike is exceedingly dense, and 5 ft. 8 in. long; the lower or naked portion, 4 ft. 8 in. long, is prominently marked by abortive flower buds, with, near the base, some bristle-like scales 31/2 in. to 4 in. long. The flowers are regularly arranged in parcels of three, all the three being equal in size and opening together; they are greenish white in color, 11/2 in. long, or, including the stamens, some 23/4 in. to 3 in. long.

The first flowers opened on August 3, and they have continued to open in succession, a belt about 3 in. wide opening each day. They remain in good condition for two days; on the third day the stamens wilt and drop down, but the pistil remains erect till the fourth day. On the first day of opening the pistil is not so long as the stamens by 3/4 in.; on the second it has grown to be as long as the stamens, but it is not in condition to receive the pollen till after noon of the second day. Although the flowers on some eighteen inches of the spike have already blossomed, none of the ovaries have been fertilized; they are dropping off, but I am rather sanguine regarding those about the middle of the spike. So great is the superfluity of nectar contained in the flowers, that on the afternoon of the second day it often drops from the cups, and the least shake to the scape brings it down in a shower. The main beauty of the inflorescence consists in the dense bottle-brush-like mass of bright yellow anthers. This plant, together with several smaller ones, was contributed to this garden by Dr. Edward Palmer, who collected them in their native wilds—the mountains of Northern Mexico—some three years ago. He found them growing in a limited and rather inaccessible locality in gravelly and rocky soil some miles from Monterey. In addition to those he sent here he also sent a quantity to the garden of the Agricultural Department at Washington, and some to Dr. Engelmann, the eminent botanist at St. Louis. To Dr. Engelmann he also sent a piece of an old flower stem and some dried capsules which he found upon an old plant, and it was from these specimens in 1880 that the doctor was enabled to describe for the first time the inflorescence of this Agave.—The Garden.

* * * * *



In the course of an investigation in which we are at present engaged we have arrived at some results which appear to us to be very interesting. We find that the generally received view that the fats are ethers of glycerin is partially correct, and that instances of a different kind of structure occur among the natural oils and fats.

Ethers of iso-glycerin, or of homologues of iso-glycerin, appear to occur. Iso-glycerin has this structure:

C(OH){2} CH CH{3}

It exists in its ethers, but cannot be isolated, and should be resolved into:

COOH + H_{2}O CH_{2} CH_{3}

Ethers of iso-glycerin, or ethers of homologues of iso-glycerin, yield no glycerin when saponified.—Chemical News.

* * * * *

A catalogue, containing brief notices of many important scientific papers heretofore published in the SUPPLEMENT, may be had gratis at this office.

* * * * *




Sent by mail, postage prepaid, to subscribers in any part of the United States or Canada. Six dollars a year, sent, prepaid, to any foreign country.

All the back numbers of THE SUPPLEMENT, from the commencement, January 1, 1876, can be had. Price, 10 cents each.

All the back volumes of THE SUPPLEMENT can likewise be supplied. Two volumes are issued yearly. Price of each volume, $2.50, stitched in paper, or $3.50, bound in stiff covers.

COMBINED RATES—One copy of SCIENTIFIC AMERICAN and one copy of SCIENTIFIC AMERICAN SUPPLEMENT, one year, postpaid, $7.00.

A liberal discount to booksellers, news agents, and canvassers.



* * * * *


In connection with the SCIENTIFIC AMERICAN, Messrs. MUNN & Co. are Solicitors of American and Foreign Patents, have had 38 years' experience, and now have the largest establishment in the world. Patents are obtained on the best terms.

A special notice is made in the SCIENTIFIC AMERICAN of all Inventions patented through this Agency, with the name and residence of the Patentee. By the immense circulation thus given, public attention is directed to the merits of the new patent, and sales or introduction often easily effected.

Any person who has made a new discovery or invention can ascertain, free of charge, whether a patent can probably be obtained, by writing to MUNN & Co.

We also send free our Hand Book about the Patent Laws, Patents, Caveats. Trade Marks, their costs, and how procured, with hints for procuring advances on inventions. Address


Branch Office, cor. F and 7th Sts., Washington, D. C.


Previous Part     1  2  3
Home - Random Browse