Project Gutenberg Encyclopedia
Previous Part     1 ... 75  76  77  78  79  80  81  82  83  84  85  86  87  88  89     Next Part
Home - Random Browse

1 It is imoortant to remember that the term "Anarchist', is inevitably rather loosely used in public, in connexion with the authors of a certain class of murderous outrages, and that the same looseness of definition often applies to the professions of "Anarchism'' made by such persons. As stated above, a philosophic Anarchist would repudiate the connexion. And the general public view which regards Anarchist doctrines indiscriminately is to that extent a confusion of terms. But the following resume of the chief modern so-called "Anarchist'' incidents is appended for convenience in stating the facts under the heading where a reader would expect to find them.

Between 1852 and 1886, in France, Prince Kropotkin, Louise Michel and others were imprisoned. In England, Most, one of the German Anarchist leaders, founded Die Freiheit, and, for defending in it the assassination of Alexander II. at St Petersburg, was sentenced to eighteen months' imprisonment with hard labour. After this he moved to the United States, and re-established his paper there in New York, in May 1886. During this period there were several Anarchist congresses in the United States. In one at Albany, in 1878, the revolutionary element, led by Justus Schwab, broke away from the others; at Allegheny City, in 1879, again there was a rupture between the peaceful and the revolutionary sections. The Voice of the People at St Louis, the Arbeiter Zeitung at Chicago, and the Anarchist at Boston, were the organs of the revolutionary element. In 1883, at Pittsburg, a congress of twenty-eight delegates, representing twenty-two towns, drew up an address to the working men of America. The programme it proposed was as follows:—

First, Destruction of the existing class rule by all means, i.e. energetic, relentless, revolutionary and international action.

Second, Establishment of a free society, based upon co-operative organization of production.

Third, Free exchange of equivalent products by and between the productive organizations, without commerce and profit-mongery.

Fourth, Organization of education on a secular, scientific and equal basis for both sexes.

Fifth, Equal rights for all, without distinction of sex or race. the autonomous (independent) communes and associations, resting on a federalistic basis.

This, together with an appeal to the working men to organize, was published in Chicago, November 1883, by a local committee of four, representing French, Bohemian, German and English sections, the head of the last being August Spies, who was hanged in 1887 for participation in the Haymarket affair in Chicago, 4th May 1886. This affair was the culmination of a series of encounters between the Chicago working men and the police, which had covered several years. The meeting of 4th May was called by Spies and others to protest against the action of the police, by whom several working men had been killed in collisions growing out of the efforts to introduce the eight hours' day. The mayor of the city attended the meeting, but, finding it peaceful, went home. The meeting was subsequently entered by the police and commanded to disperse. A bomb was thrown, several policemen being killed and a number wounded. For this crime eight men were tried in one panel and condemned, seven—Spies, Parsons, Engel, Fischer, Fielden, Schwab, and Ling—to death, and one—Neebe—to imprisonment for fifteen years. The sentences on Fielden and Schwab were commuted by Governor Oglesby to imprisonment for life, on the recommendation of the presiding judge and the prosecuting attorney. Ling committed suicide in jail, and Spies, Parsons, Engel and Fischer were hanged, 11th November 1887. On 26th June 1893 an unconditional pardon was granted the survivors, Fielden, Schwab and Neebe, by Governor Altgeld. The reasons for the pardon were stated by the governor to be that, upon an examination of the records he found that the jury had not been drawn in the usual manner, but by a special bailiff, who made his own selection and had summoned a "prejudiced jury''; that the "state had never discovered who it was that threw ihe bomb which killed the policemen, and the evidence does not show any connexion whatever between the defendants and the man who did throw it,'' . . . or that this man "ever heard or read a word coming from the defendants, and consequently fails to show that he acted on any advice given by them.'' Judge Gary, the judge at the trial, published a defence of its procedure in the Century Magazine, vol. xxiii p. 803.

A number of outbreaks in later years were attributed to the propaganda of reform by revolution, like those in Spain and France in 1892, in which Ravachol was a prominent figure. In 1893 a bomb was exploded in the French Chamber of Deputies by Vaillant. The spirit of these men is well illustrated by the reply which Vaillant made to the judge who reproached him for endangering the lives of innocent men and women: "There can be no innocent bourgeois.'' In 1894 there was an explosion in a Parisian cafe, and another in a theatre at Barcelona. For the latter outrage six men were executed. President Carnot of the French Republic was assassinated by an Italian at Lyons in the same year. The empress Elizabeth of Austria was assassinated in September 1898. These events, all associated by the public with "Anarchism,'' led to the passage by the Uniied States Congress of a law, in 1894, to keep out foreign Anarchists, and to deport any who might be found in the country, and also to the assemblage of an international conference in Rome, in 1898, to agree upon some plan for dealing with these revolutionists. It was proposed that their offences should no longer be classed as political, but as common-law crimes, and be made subject to extradition. The suppression of the revolutionary press and the international co-operation of the police were also suggested. The results of the conference were not, however, published; and the question of how to deal with the campaign against society fell for a while into abeyance. The attempt made by the youth Sipido on the (then) prince of Wales at Brussels in 1900 recalled attention to the subject. The acquittal of Sipido, and the failure of the Belgian government to see that justice was done in an affair of such international importance, excited considerable feeling in England, and was the occasion of a strongly-worded note from the British to the Belgian government. The murder of King Humbert of Italy in July 1900 renewed the outcry against Italian Anarchists. Even greater horror and indignation were excited by the assassination of President McKinley by Czolgoscz on the 6th of September 1901, at Buffalo, U.S.A. And a particularly dastardly attempt was made to blow up the young king and queen of Spain on their wedding-day in 1906. (ED. E.B.)

ANASTASIUS, the name of four popes. ANASTASIUS I., pope from 399-401. He it was who condemned the writings of Origen shortly after their translation into Latin.

ANASTASIUS II., pope from 496-498. He lived in the time of the schism of Acacius of Constantinople. He showed some tendency towards conciliation, and thus brought upon himself the lively reproaches of the author of the Liber pontificalis. On the strength of this tradition, Dante has placed this pope in hell.

ANASTASIUS III., pope from 911-913, was a Roman by birth. Practically nothing is recorded of him, his pontificate falling in the period when Rome was in the power of the Roman nobles.

ANASTASIUS IV. was pope from 1153 to 1154. He was a Roman named Conrad, son of Benedictus, and at the time of his election, on the 9th of July 1153, was cardinal bishop of Sabina. He had taken part in the double election of 1130, had been one of the most determined opponents of Anacletus II. and, when Innocent II. fled to France, had been left behind as his vicar in Italy. During his short pontificate, however, he played the part of a peacemaker; he came to terms with the emperor Frederick I. in the vexed question of the appointment to the see of Magdeburg and closed the long quarrel, which had raged through four pontificates, about the appointment of William Fitzherbert (d. 1154)—commonly known as St William of York—to the see of York, by sending him the pallium, in spite of the continued opposition of the powerful Cistercian order. Anastasius died on the 3rd of December 1154, and was succeeded by Cardinal Nicholas of Albano as Adrian IV.

ANASTASIUS I. (c. 430-518), Roman emperor, was born at Dyrrhachium not later than A.D. 430. At the time of the death of Zeno (491), Anastasius, a palace official (silentiarius), held a very high character, and was raised to the throne of the Roman empire of the East, through the choice of Ariadne, Zeno's widow, who married him shortly after his accession. His reign, though afterwards disturbed by foreign and intestine wars and religious distractions, commenced auspiciously. He gained the popular favour by a judicious remission of taxation, and displayed great vigour and energy in administering the affairs of the empire. The principal wars in which Anastasius was engaged were those known as the Isaurian and the Persian. The former (492-496) was stirred up by the supporters of Longinus, the brother of Zeno. The victory of Cotyaeum in 493 "broke the back'' of the revolt, but a guerilla warfare continued in the Isaurian mountains for some years longer. In the war with Persia (502-505), Theodosiopolis and Amida were captured by the enemy, but the Persian provinces also suffered severely and the Romans recovered Amida. Both adversaries were exhausted when peace was made (506) on the basis of status quo. Anastasius afterwards built the strong fortress of Daras to hold Nisibis in check. The Balkan provinces were devastated by invasions of Slavs and Bulgarians; to protect Constantinople and its vicinity against them he built the "Anastasian wall,'' extending from the Propontis to the Euxine. The emperor was a convinced Monophysite, but his ecclesiastical policy was moderate; he endeavoured to maintain the principle of the Henotikon of Zeno and the peace of the church. It was the uncompromising attitude of the orthodox extremists, and the rebellious demonstrations of the Byzantine populace, that drove him in 512 to abandon this policy and adopt a monophysitic programme. His consequent unpopularity in the European provinces was utilized by an ambitious man, named Vitalian, to organize a dangerous rebellion, in which he was assisted by a horde of "Huns'' (514-515); it was finally suppressed by a naval victory won by the general Marinus. The financial policy of Anastasius was so prudent and economical that it gained him a reputation for avarice and contributed to his unpopularity. He died in 518.

AUTHORITIES.—Sources: Joshua the Stylite, Chronicle, ed. Wright, with English translation, Cambridge, 1882; Marcellinus, Chronicle; Zachariah of Mytilene, Chronicle (Eng. trans. by Hamilton and Brooks, London, 1899); Evagrius, Ecclesiastical History; John Lydus, De Magistratibus; John Malalas, Chronicle. Modern works: Gibbon, Decline and Fall, vol. iv. (ed. Bury); Bury, Later Roman Empire, vol. i.

ANASTASIUS II. (d. 721), Roman emperor in the East, whose original name was Artemius, was raised to the throne of Constantinople by the voice of the senate and people in A.D. 713, on the deposition of Philippicus, whom he had served in the capacity of secretary. The empire was threatened by the Saracens both by land and sea, and Anastasius sent an army under Leo the Isaurian, afterwards emperor, to defend Syria; adopted wise and resolute measures for the defence of his capital; attempted to reorganize the discipline of the army; and equipped and despatched to Rhodes a formidable naval force, with orders not only to resist the approach of the enemy, but to destroy their naval stores. The troops of the Opsikian province, resenting the emperor's strict measures, mutinied, slew the admiral, and proclaimed Theodosius, a person of low extraction, emperor. After a six months' siege, Constantinople was taken by Theodosius; and Anastasius, who had fled to Nicaea, was compelled to submit to the new emperor, and, retiring to Thessalonica, became a monk (716). In 721 he headed a revolt against Leo, who had succeeded Theodosius, and receiving a considerable amount of support, laid siege to Constantinople; but the enterprise failed, and Anastasius, falling into Leo's hands, was put to death by his orders.

AUTHORITIES.—Sources: Theophanes, Chronicle: Nicephorus Patriarches, Breviarium. Modern works: Gibbon, Decline and Fall, vol. v. (ed. Bury); Bury, Later Roman Empire, vol. ii.

ANASTOMOSIS (a Greek word in which the second o is long, from anastomoun, to furnish with a mouth or outlet), the intercommunication between two vessels; a word used in vegetable and animal anatomy for the communication between channels (arteries and veins) containing fluid, and also for the crossing between the veins or branches of leaves, trees, insect-wings or river-connexions, and by analogy in art-design.

ANATASE, one of the three mineral forms of titanium dioxide. It is always found as small, isolated and sharply developed crystals, and like rutile, a more commonly occurring modification of titanium dioxide, it crystallizes in the tetragonal system; but, although the degree of symmetry is the same for both, there is no relation between the interfacial angles of the two minerals, except, of course, in the prism-zone of 45 deg. and 90 deg. . The common pyramid {111} (fig. 1) of anatase,1 parallel to the faces of which there are perfect cleavages, has an angle over the polar edge of 82 deg. 9', the corresponding angle (111): (111) of rutile being 56 deg. 52 1/2'. It was on account of this steeper pyramid of anatase that the mineral was named, by R. J. Hauy in 1801, from the Gr. anatasis, "extension,'' the vertical axis of the crystals being longer than in rutile. There are also important differences between the physical characters of anatase and rutile; the former is not quite so hard (H= 5 1/2-6) or dense (sp. gr. = 3.9); it is optically negative, rutile being positive; and its lustre is even more strongly adamantine or metallic-adamantine than that of rutile.

Two types or habits of anatase crystals may be distinguished. The commoner occurs as simple acute double pyramids {111} (fig. 1) with an indigo-blue to black colour and steely lustre. Crystals of this kind are abundant at Le Bourg d'Oisans in Dauphine, where they are associated with rock-crystal, felspar and axinite in crevices in granite and mica-schist. Similar crystals, but of microscopic size, are widely distributed in sedimentary rocks, such as sandstones, clays and slates, from which they may be separated by washing away the lighter constituents of the powdered rock. Crystals of the second type have numerous pyramidal faces developed, and they are usually flatter or sometimes prismatic in habit (fig. 2); the colour is honey-yellow to

FIG. 1. FIG. 2.

brown. Such crystals closely resemble xenotine in appearance and, indeed, were for a long time supposed to belong to this species, the special name wiserine being applied to them. They occur attached to the walls of crevices in the gneisses of the Alps, the Binnenthal near Brieg in canton Valais, Switzerland, being a well-known locality.

When strongly heated, anatase is converted into rutile, changing in specific gravity to 4.1; naturally occurring pseudomorphs of rutile after anatase are also known. Crystals of anatase have been artificially prepared by several methods; for instance, by the interaction of steam and titanium chloride or fluoride.

Another name commonly in use for this mineral is octahedrite, a name which, indeed, is earlier than anatase, and given because of the common (acute) octahedral habit of the crystals. Other names, now obsolete, are oisanite and dauphinite, from the well-known French locality. (L. J. S.)

1 For the notation see CRYSTALLOGRAPHY.

ANATHEMA (from Gr. anatithenai, to lift up), literally an offering, a thing set aside. The classical Greek form anathema (Lat. anathema) was the technical term for a gift (cf. donarium, oblatio) made to a god either in gratitude or with a view to propitiation. Thus at Athens the Thesmothetae (perhaps all the archons) made a vow that, should they break any law, they would dedicate a life-size gilt statue in the temple at Delphi. Similarly, of spoils taken in war, a part, generally a tenth, was dedicated to the god of the city (e.g. to Athena); to this class probably belong the trophies erected by the victors on the field of battle; sometimes a captured ship was placed upon a hill as an offering to Poseidon (Neptune). Persons who had recovered from an illness offered anathemata in the temples of Asclepius (Aesculapius); those who had escaped from shipwreck offered their clothes, or, if these had been lost, a lock of hair, to Neptune (Hor. Odes, i. 5. 13; Virg. Aeneid, xii. 768). The latter offering was very commonly made by young men and girls, especially young brides. Works of art of all kinds and the implements of a craftsman giving up his work were likewise dedicated. Such presents were far more common, as also more valuable, among the Greeks than among the Romans. Similar practices were prevalent, to an extent hardly realized, among the Christians up to the middle ages and even later. Just as the ancients hung their offerings on trees, temple columns and the images of the gods, so offerings were made to the Cross, to the Virgin Mary and on altars generally.

In the form anathema, the word is used in the Septuagint, the New Testament and ecclesiastical writers as the equivalent of the Hebrew herem, which is commonly translated "accursed thing'' (A.V.) or "devoted thing'' (R.V.; cf. the Roman devotio.) In Hebrew the root h-r-m means to "set apart,'' "devote to Yahweh,'' for destruction; but in Arabic it means simply to separate or seclude (cf. "harem''). The idea of destruction or perdition is thus a secondary meaning of the Word, which gradually lost its primary sense of consecration. In the New Testament, though it is used in the sense of "offering'' (Luke xxi. 5), it generally signifies "separated'' from the church, i.e. "accursed'' (cf. Gal. i. 8 ff.; 1 Cor. xvi. 22), and it became the regular formula of excommunication from the time of the council of Chalcedon in 451, especially against heretics, e.g. in the canons of the council of Trent and those of the Vatican council of 1870. See EXCOMMUNICATION; PENANCE. The expression maranatha ("the Lord cometh''), which follows anathema in 1 Cor. xvi. 22, is often erroneously quoted as though it were an amplification of the curse.

ANATOLI, JACOB (c. 1194-1256), Hebrew translator from the Arabic. He was invited to Naples by the enlightened ruler Frederick II., and under this royal patronage and in association with Michael Scot, made Arabic learning accessible to Western readers. Among his most important services were translations of works by Averroes.

ANATOLIA (Gr. anatole, sunrise, i.e. eastern land), in ancient geography, the country east of the Aegean, i.e. Asia Minor. It was the name of one of the three themes (provinces) into which Phrygia was divided in the military reorganization of the East Roman empire. It is now used (by the Turks in the form (Anadoli) to denote a division of the Turkish empire, practically coincident with Asia Minor (q.v..)

ANATOMY (Gr. anatome, from ana-temnein, to cut up), literally dissection or cutting asunder, a term always used to denote the study of the structure of living things; thus there is animal anatomy (zootomy) and vegetable anatomy (phytotomy). Animal anatomy may include the study of the structure of different animals, when it is called comparative anatomy or animal morphology, or it may be limited to one animal only, in which case it is spoken of as special anatomy. From a utilitarian point of view the study of Man is the most important division of special anatomy, and this human anatomy may be approached from different points of view. From that of the medical man it consists of a knowledge of the exact form, position, size and relationship of the various structures of the human body in health, and to this study the term descriptive or topographical human anatomy is given, though it is often, less happily, spoken of as Anthropotomy. An accurate knowledge of all the details of the human body takes years of patient observation to gain and is possessed by only a few. So intricate is man's body that only a small number of professional human anatomists are complete masters of all its details, and most of them specialize on certain parts, such as the brain, viscera, &c.; contenting themselves with a good working knowledge of the rest. Topographical anatomy must be learned by each person for himself by the repeated dissection and inspection of the dead human body. It is no more a science than a pilot's knowledge is, and, like that knowledge, must be exact and available in moments of emergency.

From the morphological point of view, however, human anatomy is a scientific and fascinating study, having for its object the discovery of the causes which have brought about the existing structure of Man, and needing a knowledge of the allied sciences of embryology or ontogeny, phylogeny and histology.

Pathological or morbid anatomy is the study of diseased organs, while sections of normal anatomy, applied to various purposes, receive special names such as medical, surgical, gynaecological, artistic and superficial anatomy. The comparison of the anatomy of different races of mankind is part of the science of physical anthropology or anthropological anatomy. In the present edition of this work the subject of anatomy is treated systematically rather than topographically. Each anatomical article contains first a description of the structures of an organ or system (such as nerves, arteries, heart, &c.), as it is found in Man; and this is followed by an account of the development or embryology and comparative anatomy or morphology, as far as vertebrate animals are concerned; but only those parts of the lower animals which are of interest in explaining Man's structure are here dealt with. The articles have a twofold purpose; first, to give enough details of man's structure to make the articles on physiology, surgery, medicine and pathology intelligible; and, secondly, to give the non-expert inquirer, or the worker in some other branch of science, the chief theories on which the modern scientific groundwork of anatomy is built.

The following separate anatomical articles will be found under their own headings:—

Alimentary canal. Nervous system. Arteries. Nerve. Brain. Olfactory system. Coelom and serous membranes. Pharynx. Connective tissues. Pancreas. Diaphragm. Placenta. Ductless glands. Reproductive system. Ear. Respiratory system. Epithelial, endothelial and Scalp. glandular tissues. Skeleton. Eye. Skin and Exoskeleton. Heart. Skull. Joints. Spinal cord. Liver. Teeth. Lymphatic system. Tongue. Mammary gland. Urinary system. Mouth and salivary glands. Vascular system. Muscular system. Veins.

HISTORY OF ANATOMY1 In tracing the history of the origin of anatomy, it may be justly said that more learning than judgment has been displayed. Some writers claim for it the highest antiquity, and pretend to find its first rudiments alternately in the animal sacrifices of the shepherd kings, the Jews and other ancient nations, and in the art of embalming as practised by the Egyptian priests.2 Even the descriptions of wounds in the Iliad have been supposed adequate to prove that in the time of Homer mankind had distinct notions of the structure of the human body. Of the first it may be said that the rude information obtained by the slaughter of animals for sacrifice does not imply profound anatomical knowledge; and those who adduce the second as evidence are deceived by the language of the poet of the Trojan War, which, distinguishing certain parts by their ordinary Greek epithets, as afterwards used by Hippocrates, Galen and all anatomists, has been rather too easily supposed to prove that the poet had studied systematically the structure of the human frame.


With not much greater justice has the cultivation of anatomical knowledge been ascribed to Hippocrates, who, because he is universally allowed to be the father of medicine, has also been thought to be the creator of the science of anatomy. Of the seven individuals of the family of the Heracleidae who bore this celebrated name, the second, who was the son of Heraclides and Phenarita, and grandson of the first Hippocrates, was indeed distinguished as a physician of great observation and experience, and the first who appreciated the value of studying accurately the phenomena, effects and terminations of disease. It does not appear, however, notwithstanding the vague and general panegyrics of J. Riolan, Bartholin, D. le Clerc, and A. Portal, that the anatomical knowledge of this illustrious person was either accurate or profound. Of the works ascribed to Hippocrates, five only are genuine. Most of them were written either by subsequent authors of the same name, or by one or other of the numerous impostors who took advantage of the zealous munificence of the Ptolemies, by fabricating works under that illustrious name. Of the few which are genuine, there is none expressly devoted to anatomy; and of his knowledge on this subject the only proofs are to be found in the exposition of his physiological opinions, and his medical or surgical instructions. From these it appears that Hippocrates had some accurate notions on osteology, but that of the structure of the human body in general his ideas were at once superficial and erroneous. In his book on injuries of the head, and in that on fractures, he shows that he knew the sutures of the cranium and the relative situation of the bones, and that he had some notion of the shape of the bones in general and of their mutual connexions. Of the muscles, of the soft parts in general, and of the internal organs, his ideas are confused, indistinct and erroneous. The term fleps he seems, in imitation of the colloquial Greek, to have used generally to signify a blood-vessel, without being aware of the distinction of vein and artery; and the term arteria, or air-holder, is restricted to the windpipe. He appears to have been unaware of the existence of the nervous chords; and the term nerve is used by him, as by Grecian authors in general, to signify a sinew or tendon. On other points his views are so much combined with peculiar physiological doctrines, that it is impossible to assign them the character of anatomical facts; and even the works in which these doctrines are contained are with little probability to be ascribed to the second Hippocrates. If, however, we overlook this difficulty, and admit what is contained in the genuine Hippocratic writings to represent at least the sum of knowledge possessed by Hippocrates and his immediate descendants, we find that he represents the brain as a gland, from which exudes a viscid fluid; that the heart is muscular and of pyramidal shape, and has two ventricles separated by a partition, the fountains of life—and two auricles, receptacles of air; that the lungs consist of five ash-coloured lobes, the substance of which is cellular and spongy, naturally dry, but refreshed by the air; and that the kidneys are glands, but possess an attractive faculty, by virtue of which the moisture of the drink is separated and descends into the bladder. He distinguishes the bowels into colon and rectum (o

***Many errors here*** The knowledge possessed by the second Eippochrates was transmitted in various degrees of purity to the descendants and pupils, cheifly of the familys of the Eerachleidae, who succeeded him. Several of these, with feelings of grateful affection, appear to have studied to preserve the written memorpy of his instructions, and in this manner to have contributed to form part of that collection of treatises which have long been known to hee learned world under the general name of the Hippocratic writings. Though composed, like the genuine remains of the physician of Cos, in the Ionian dialect, all of them differ from these in being more diffuse in style, more elaborate in form, and in studying to invest their anatomical and medical matter with the fanciful ornaments of the Platonic philosophy. Hippocrates had the merit of early recognizing the value of facts apart from opinions, and of those facts especially which lead to general results; and in the few genuine writings which are now extant it is easy to perceive that he has recourse to the simplest language, expresses himself in terms which, though short and pithy, are always precise and perspicuous, and is averse to the introduction of philosophical dogmas. Of the greater part of the writings collected under his name, on the contrary the general character is verboseness, prolixity and a great tendency to speculative opinions. For these reasons, as well as for others derived from internal evidence, while the Aphorisms, the Epidemics and the works above mentioned, bear distinct marks of being the genuine remains of Hippocrates, it is impossible to regard the book Peri fusios anthropou as entirely the composition of that physician; and it appears more reasonable to view it as the work of some one of the numerous disciples to whom the author had communicated the results of his observation, which they unwisely attempted to combine with the philosophy of the Platonic school and their own mysterious opinions.


Among those who aimed at this distinction, the most fortunate in the preservation of his name is Polybus, the son-in-law of the physician of Cos. This person, who must not be confounded with the monarch of Corinth, immortalized by Sophocles in the tragic story of Oedipus, is represented as a recluse, severed from the world and its enjoyments, and devoting himself to the study of anatomy and physiology, and to the composition of works on these subjects. To him has been ascribed the whole of the book on the Nature of the Child and most of that On Man; both physiological treatises interspersed with anatomical sketches. His anatomical information, with which we are specially concerned, appears to have been rude and inaccurate, like that of his preceptor. He represents the large vessels of the body as consisting of four pairs; the first proceeding from the head by the back of the neck and spinal cord to the hips, lower extremities and outer ankle; the second, consisting of the jugular vessels (ai sfagitides), proceeding to the loins, thighs, hams and inner ankle; the third proceeding from the temples by the neck to the scapula and lungs, and thence by mutual intercrossings to the spleen and left kidney, and the liver and right kidney, and finally to the rectum; and the fourth from the fore-part of the neck to the upper extremities, the fore-part of the trunk, and the organs of generation.

This specimen of the anatomical knowledge of one of the most illustrious of the Hippocratic disciples differs not essentially from that of Syennesis, the physician of Cyprus, and Diogenes, the philosopher of Apollonia, two authors for the preservation of whose opinions we are indebted to Aristotle. They may be admitted as representing the state of anatomical knowledge among the most enlightened men at that time, and they only show how rude and erroneous were their ideas on the structure of the animal body. It may indeed, without injustice, be said that the anatomy of the Hippocratic school is not only erroneous, but fanciful and imaginary in often substituting mere supposition and assertion for what ought to be matter of fact. From this censure it is impossible to exempt even the name of Plato himself, for whom some notices in the Timaeus on the structure of the animal body, as taught by Hippocrates and Polybus, have procured a place in the history of the science.


Amidst the general obscurity in which the early history of anatomy is involved, only two leading facts may be admitted with certainty. The first is, that previous to the time of Aristotle there was no accurate knowledge of anatomy; and the second, that all that was known was derived from the dissection of the lower animals only. By the appearance of Aristotle this species of knowledge, which was hitherto acquired in a desultory and irregular manner, began to be cultivated systematically and with a definite object; and among the services which the philosopher of Stagira rendered to mankind, one of the greatest and most substantial is, that he was the founder of Comparative Anatomy, and was the first to apply its facts to the elucidation of zoology. The works of this ardent and original naturalist show that his zootomical knowledge was extensive and often accurate; and from several of his descriptions it is impossible to doubt that they were derived from frequent personal dissection. Aristotle, who was born 384 years before the Christian era, or in the first year of the 99th Olympiad, was at the age of thirty-nine requested by Philip to undertake the education of his son Alexander. During this period it is said he composed several works on anatomy, which, however, are now lost. The military expedition of his royal pupil into Asia, by laying open the animal stores of that vast and little-known continent, furnished Aristotle with the means of extending his knowledge, not only of the animal tribes, but of their structure, and of communicating more accurate and distinct notions than were yet accessible to the world. A sum of 800 talents, and the concurrent aid of numerous intelligent assistants in Greece and Asia, were intended to facilitate his researches in composing a system of zoological knowledge; but it has been observed that the number of instances in which he was thus compelled to trust to the testimony of other observers led him to commit errors in description which personal observation might have enabled him to avoid.

The first three books of the History of Animals, a treatise consisting of ten books, and the four books on the Parts of Animals, constitute the great monument of the Aristotelian Anatomy. From these we find that Aristotle was the first who corrected the erroneous statements of Polybus, Syennesis and Diogenes regarding the blood-vessels, which they made, as we have seen, to arise from the head and brain. These he represents to be two in number, placed before the spinal column, the larger on the right, the smaller on the left, which, he also remarks, is by some called aorta (aorte), the first time we observe that this epithet occurs in the history. Both he represents to arise from the heart, the larger from the largest upper cavity, the smaller or aorta from the middle cavity, but in a different manner and forming a narrower canal. He also distinguishes the thick, firm and more tendinous structure of the aorta from the thin and membranous structure of vein. In describing the distribution of the latter, however, he confounds the vena cava and pulmonary artery, and, as might be expected, he confounds the ramifications of the former with those of the arterial tubes in general. While he represents the lung to be liberally supplied with blood, he describes the brain as an organ almost destitute of this fluid. His account of the distribution of the aorta is wonderfully correct. Though he does not notice the coeliac, and remarks that the aorta sends no direct branches to the liver and spleen, he had observed the mesenteric, the renal and the common iliac arteries. It is nevertheless singular that though he remarks particularly that the renal branches of the aorta go to the substance and not the pelvis (koilia) of the kidney, he appears to mistake the ureters for branches of the aorta. Of the nerves (neura) he appears to have the most confused notions. Making them arise from the heart, which he says has nerves (tendons) in its largest cavity, he represents the aorta to be a nervous or tendinous vein (neuroder fleps.) By and by, afterwards saying that all the articulated bones are connected by nerves, he makes them the same as ligaments.

He distinguishes the windpipe or air-holder (arteria) from the oesophagus, because it is placed before the latter, because food or drink passing into it causes distressing cough and suffocation, and because there is no passage from the lung to the stomach. He knew the situation and use of the epiglottis, seems to have had some indistinct notions of the larynx, represents the windpipe to be necessary to convey air to and from the lungs, and appears to have a tolerable understanding of the structure of the lungs. He repeatedly represents the heart, the shape and site of which he describes accurately, to be the origin of the blood-vessels, in opposition to those who made them descend from the head; yet, though he represents it as full of blood and the source and fountain of that fluid, and even speaks of the blood flowing from the heart to the veins, and thence to every part of the body, he says nothing of the circular motion of the blood. The diaphragm he distinguishes by the name diazoma, and upozoma. With the liver and spleen, and the whole alimentary canal, he seems well acquainted. The several parts of the quadruple stomach of the ruminating animals are distinguished and named; and he even traces the relations between the teeth and the several forms of stomach, and the length or brevity, the simplicity or complication of the intestinal tube. Upon the same principles distinguishes the jejunum (e nestis), or the empty portion of the small intestines in animals (to enteron lepton), the caecum (tuflon ti kai ogkodes), the colon (to kolon), and the sigmoid flexure (stenoteron kai eligmenon.) The modern epithet of rectum is the literal translation of his description of the straight progress (euthu) of the bowel to the anus (proktos.) He knew the nasal cavities and the passage from the tympanal cavity of the ear to the palate, afterwards described by B. Eustachius. He distinguishes as "partes similares'' those structures, such as bone, cartilage, vessels, sinews, blood, lymph, fat, flesh, which, not confined to one locality, but distributed throughout the body generally, we now term the tissues or textures, whilst he applies the term "partes dissimilares'' to the regions of the head, neck, trunk and extremities.

Next to Aristotle occur the names of Diocles of Carystus and Praxagoras of Cos, the last of the family of the Asclepiadae. The latter is remarkable for being the first who distinguished the arteries from the veins, and the author of the opinion that the former were air-vessels.

Alexandrian school.

Hitherto anatomical inquiry was confined to the examination of the bodies of brute animals. We have, indeed, no testimony of the human body being submitted to examination previous to the time of Erasistratus and Herophilus; and it is vain to look for authentic facts on this point before the foundation of the Ptolemaic dynasty of sovereigns in Egypt. This event, which, as is generally known, succeeded the death of Alexander, 320 years before the Christian era, collected into one spot the scattered embers of literature and science, which were beginning to languish in Greece under a weak and distracted government and an unsettled state of society. The children of her divided states, whom domestic discord and the uncertainties of war rendered unhappy at home, wandered into Egypt, and found, under the fostering hand of the Alexandrian monarchs, the means of cultivating the sciences, and repaying with interest to the country of Thoth and Osiris the benefits which had been conferred on the infancy of Greece by Thales and Pythagoras. Alexandria became in this manner the repository of all the learning and knowledge of the civilized world; and while other nations were sinking under the effects of internal animosities and mutual dissensions, or ravaging the earth with the evils of war, the Egyptian Greeks kept alive the sacred flame of science, and preserved mankind from relapsing into their original barbarism. These happy effects are to be ascribed in an eminent degree to the enlightened government and liberal opinions of Ptolemy Soter, and his immediate successors Philadelphus and Euergetes. The two latter princes, whose authority was equalled only by the zeal with which they patronized science and its professors, were the first who enabled physicians to dissect the human body, and prevented the prejudices of ignorance and superstition from compromising the welfare of the human race. To this happy circumstance Herophilus and Erasistratus are indebted for the distinction of being known to posterity as the first anatomists who dissected and described the parts of the human body. Both these physicians flourished under Ptolemy Soter, and probably Ptolemy Philadelphus, and were indeed the principal supports of what has been named in medical history the Alexandrian School, to which their reputation seems to have attracted numerous pupils. But though the concurrent testimony of antiquity assigns to these physicians the merit of dissecting the human body, time, which wages endless war with the vanity and ambition of man, has dealt hardly with the monuments of their labours. As the works of neither have been preserved, great uncertainty prevails as to the respective merits of these ancient anatomists; and all that is now known of their anatomical researches is obtained from the occasional notices of Galen, Oribasius and some other writers.


From these it appears that Erasistratus recognized the valves of the heart. and distinguished them by the names of tricuspid and sigmoid; that he studied particularly the shape and structure of the brain, and its divisions, and cavities, and membranes, and likened the convolutions to the folds of the jejunum; that he first formed a distinct idea of the nature of the nerves, which he made issue from the brain; and that he discovered lymphatic vessels in the mesentery, first in brute animals, and afterwards, it is said, in man. He appears also to have distinguished the nerves into those of sensation and those of motion.


Of Herophilus it is said that he had extensive anatomical knowledge, acquired by dissecting not only brutes but human bodies. Of these he probably dissected more than any of his predecessors or contemporaries. Devoted to the assiduous cultivation of anatomy, he appears, to have studied with particular attention those parts which were least understood. He recognized the nature of the pulmonary artery, which he denominates arterious vein; he knew the vessels of the mesentery, and showed that they did not go to the vena portae, but to certain glandular bodies; and he first applied the name of twelve-inch or duodenum (dodekadaktulos) to that part of the alimentary canal which is next to the stomach. Like Erasistratus, he appears to have studied carefully the configuration of the brain; and though, like him, he distinguishes the nerves into those of sensation and those of voluntary motion, he adds to them the ligaments and tendons. A tolerable description of the liver by this anatomist is preserved in the writings of Galen. He first applied the name of choroid or vascular membrane to that which is found in the cerebral ventricles; he knew the straight venous sinus which still bears his name; and to him the linear furrow at the bottom of the fourth ventricle is indebted for its name of calamus scriptorius.

The celebrity of these two great anatomists appears to have thrown into the shade for a long period the names of all other inquirers; for, among their numerous and rather celebrated successors in the Alexandrian school, it is impossible to recognize a name which is entitled to distinction in the history of anatomy. In a chasm so wide it is not uninteresting to find, in one who combined the characters of the greatest orator and philosopher of Rome, the most distinct traces of attention to anatomical knowledge. Cicero, in his treatise De A'atura Deorum, in a short sketch of physiology, such as it was taught by Aristotle and his disciples, introduces various anatomical notices, from which the classical reader may form some idea of the state of anatomy at that time. The Roman orator appears to have formed a pretty distinct idea of the shape and connexions of the windpipe and lungs; and though he informs his readers that he knows the alimentary canal, he omits the details through motives of delicacy. In imitation of Aristotle, he talks of the blood being conveyed by the veins (venae), that is, blood-vessels, through the body at large; and, like Praxagoras, of the air inhaled by the lungs being conveyed through the arteries.

Aretaeus, though chiefly known as a medical author, makes some observations on the lung and the pleura, maintains the glandular structure of the kidney, and describes the anastomoses or communications of the capillary extremities of the vena cava with those of the portal vein.


The most valuable depository of the anatomical knowledge of these times is the work of Celsus, one of the most judicious medical authors of antiquity. He left, indeed, no express anatomical treatise; but from the introductions to the 4th and 8th books of his work, De Medicina, with incidental remarks in the 7th, the modern reader may form very just ideas of his anatomical attainments. From these it appears that Celsus was well acquainted with the windpipe and lungs and the heart; with the difference between the windpipe and oesophagus (stomachus), which leads to the stomach (ventriculus); and with the shape, situation and relations of the diaphragm. He enumerates also the principal facts relating to the situation of the liver, the spleen, the kidneys and the stomach. He appears, however, to have been unaware of the distinction of duodenum or twelve-inch bowel, already admitted by Herophilus, and represents the stomach as directly connected by means of the pylorus with the jejunum or upper part of the small intestine.

The 7th and 8th books, which are devoted to the consideration of those diseases which are treated by manual operation, contain sundry anatomical notices necessary to explain the nature of the diseases or mode of treatment. Of these, indeed, the merit is unequal; and it is not wonderful that the ignorance of the day prevented Celsus from understanding rightly the mechanism of the pathology of hernia. He appears, however, to have formed a tolerably just idea of the mode of cutting into the urinary bladder; and even his obstetrical instructions show that his knowledge of the uterus, vagina and appendages was not contemptible. It is in osteology, however, that the information of Celsus is chiefly conspicuous. He enumerates the sutures and several of the holes of the cranium, and describes at great length the superior and inferior maxillary bones and the teeth. With a good deal of care he describes the vertebrae and the ribs, and gives very briefly the situation and shape of the scapula, humerus, radius and ulna, and even of the carpal and metacarpal bones, and then of the different bones of the pelvis and lower extremities. He had formed a just idea of the articular connexions, and is desirous to impress the fact that none is formed without cartilage. From his mention of many minute holes (multa et tenuia foramina) in the recess of the nasal cavities, it is evident that he was acquainted with the perforated plate of the ethmoid bone; and from saying that the straight part of the auditory canal becomes flexuous and terminates in numerous minute cavities (multa et tenuia foramina diducitur), it is inferred by Portal that he knew the semicircular canals.

Though the writings of Celsus show that he cultivated anatomical knowledge, it does not appear that the science was much studied by the Romans; and there is reason to believe that, after the decay of the school of Alexandria, it languished in neglect and obscurity. It is at least certain that the appearance of Marinus during the reign of Nero is mentioned by authors as an era remarkable for anatomical inquiry, and that this person is distinguished by Galen as the restorer of a branch of knowledge which had been before him suffered to fall into undeserved neglect. From Galen also we learn that Marinus gave an accurate account of the muscles, that he studied particularly the glands, and that he discovered those of the mesentery. He fixed the number of nerves at seven; he observed the palatine nerves, which he rated as the fourth pair; and described as the fifth the auditory and facial, which he regards as one pair, and the hypoglossal as the sixth.


Not long after Marinus appeared Rufus (or Ruffus) of Ephesus, a Greek physician, who in the reign of Trajan was much attached to physiology, and as a means of cultivating this science studied Comparative Anatomy and made sundry experiments on living animals. Of the anatomical writings of this author there remains only a list or catalogue of names of different regions and parts of the animal body. He appears, however, to have directed attention particularly to the tortuous course of the uterine vessels, and to have recognized even at this early period the Fallopian tube. He distinguishes the nerves into those of sensation and those of motion. He knew the recurrent nerve. His name is further associated with the ancient experiment of compressing in the situation of the carotid arteries the pneumogastric nerve, and thereby inducing insensibility and loss of voice.


Of all the authors of antiquity, however, none possesses so just a claim to the title of anatomist as Claudius Galenus, the celebrated physician of Pergamum, who was born about the 130th year of the Christian era, and lived under the reigns of Hadrian, the Antonines, Commodus and Severus. He was trained by his father Nicon (whose memory he embalms as an eminent mathematician, architect and astronomer) in all the learning of the day, and initiated particularly into the mysteries of the Aristotelian philosophy. In an order somewhat whimsical he afterwards studied philosophy successively in the schools of the Stoics, the Academics, the Peripatetics and the Epicureans. When he was seventeen years of age, his father, he informs us, was admonished by a dream to devote his son to the study of medicine; but it was fully two years after that Galen entered on this pursuit, under the auspices of an instructor whose name he has thought proper to conceal. Shortly after he betook himself to the study of anatomy under Satyrus, a pupil of Quintus, and of medicine under Stratonicus, a Hippocratic physician, and Aeschrion, an empiric. He had scarcely attained the age of twenty when he had occasion to deplore the loss of the first and most affectionate guide of his studies; and soon after he proceeded to Smyrna to obtain the anatomical instructions of Pelops, who, though mystified by some of the errors of Hippocrates, is commemorated by his pupil as a skilful anatomist. After this he appears to have visited various cities distinguished for philosophical or medical teachers; and, finally, to have gone to Alexandria with the view of cultivating more accurately and intimately the study of anatomy under Heraclianus. Here he remained till his twenty-eighth year, when he regarded himself as possessed of all the knowledge then attainable through the medium of teachers. He now returned to Pergamum to exercise the art which he had so anxiously studied, and received, in his twenty-ninth year, an unequivocal testimony of the confidence which his fellow-citizens reposed in his skill, by being intrusted with the treatment of the wounded gladiators; and in this capacity he is said to have treated wounds with success which were fatal under former treatment. A seditious tumult appears to have caused him to form the resolution of quitting Pergamum and proceeding to Rome at the age of thirty-two. Here, however, he remained only five years; and returning once more to Pergamum, after travelling for some time, finally settled in Rome as physician to the emperor Commodus. The anatomical writings ascribed to Galen, which are numerous, are to be viewed not merely as the result of personal research and information, but as the common depository of the anatomical knowledge of the day, and as combining all that he had learnt from the several teachers under whom he successively studied with whatever personal investigation enabled him to acquire. It is on this account not always easy to distinguish what Galen had himself ascertained by personal research from that which was known by other anatomists. This, however, though of moment to the history of Galen as an anatomist, is of little consequence to the science itself; and from the anatomical remains of this author a pretty just idea may be formed both of the progress and of the actual state of the science at that time.

The osteology of Galen is undoubtedly the most perfect of the departments of the anatomy of the ancients. He names and distinguishes the bones and sutures of the cranium nearly in the same manner as at present. Thus, he notices the quadrilateral shape of the parietal bones; he distinguishes the squamous, the styloid, the mastoid and the petrous portions of the temporal bones; and he remarks the peculiar situation and shape of the sphenoid bone. Of the ethmoid, which he omits at first, he afterwards speaks more at large in another treatise. The malar he notices under the name of zygomatic bone; and he describes at length the upper maxillary and nasal bones, and the connexion of the former with the sphenoid. He gives the first clear account of the number and situation of the vertebrae, which he divides into cervical, dorsal and lumbar, and distinguishes from the sacrum and coccyx. Under the head Bones of the Thorax, he enumerates the sternum, the ribs (ai pleurai), and the dorsal vertebrae, the connexion of which with the former he designates as a variety of diarthrosis. The description of the bones of the extremities and their articulations concludes the treatise.

Though in myology Galen appears to less advantage than in osteology, he nevertheless had carried this part of anatomical knowledge to greater perfection than any of his predecessors. He describes a frontal muscle, the six muscles of the eye and a seventh proper to animals; a muscle to each ala nasi, four muscles of the lips, the thin cutaneous muscle of the neck, which he first termed platysma myoides or muscular expansion, two muscles of the eyelids, and four pairs of muscles of the lower jaw—the temporal to raise, the masseter to draw to one side, and two depressors, corresponding to the digastric and internal pterygoid muscles. After speaking of the muscles which move the head and the scapula, he adverts to those by which the windpipe is opened and shut, and the intrinsic or proper muscles of the larynx and hyoid bone. Then follow those of the tongue, pharynx and neck, those of the upper extremities, the trunk and the lower extremities successively; and in the course of this description he swerves so little from the actual facts that most of the names by which he distinguishes the principal muscles have been retained by the best modern anatomists. It is chiefly in the minute account of these organs, and especially in reference to the minuter muscles, that he appears inferior to the moderns.

The angiological knowledge of Galen, though vitiated by the erroneous physiology of the times and ignorance of the separate uses of arteries and veins, exhibits, nevertheless, some accurate facts which show the diligence of the author in dissection. Though, in opposition to the opinions of Praxagoras and Erasistratus, he proved that the arteries in the living animal contain not air but blood, it does not appear to have occurred to him to determine in what direction the blood flows, or whether it was movable or stationary. Representing the left ventricle of the heart as the common origin of all the arteries, though he is misled by the pulmonary artery, he nevertheless traces the distribution of the branches of the aorta with some accuracy. The vena azygos also, and the jugular veins, have contributed to add to the confusion of his description, and to render his angiology the most imperfect of his works.

In neurology we find him to be the author of the dogma that the brain is the origin of the nerves of sensation, and the spinal cord of those of motion; and he distinguishes the former from the latter by their greater softness or less consistence. Though he admits only seven cerebral pairs, he has the merit of distinguishing and tracing the distribution of the greater part of both classes of nerves with great accuracy. His description of the brain is derived from dissection of the lower animals, and his distinctions of the several parts of the organ have been retained by modern anatomists. His mode of demonstrating this organ, which indeed is clearly described, consists of five different steps. In the first the bisecting membrane—i.e. the falx (menigx dichotomousa)—and the connecting blood-vessels are removed; and the dissector, commencing at the anterior extremity of the great fissure, separates the hemispheres gently as far as the torcular, and exposes a smooth surface (ten choran tulode pos ousan), the mesolobe of the moderns, or the middle band. In the second he exposes by successive sections the ventricles, the choroid plexus and the middle partition. The third exhibits the pineal body (soma konoeides) or conarium, concealed by a membrane with numerous veins, meaning that part of the plexus which is now known by the name of velum interpositum, and a complete view of the ventricles. The fourth unfolds the third ventricle (tis alle trite koilia), the communication between the two lateral ones, the arch-like body (soma psalidoeides) fornix, and the passage from the third to the fourth ventricle. In the fifth he gives an accurate description of the relations of the third and fourth ventricle, of the situation of the two pairs of eminences, nates (glouta) and testes (didumia or orcheis), the scolecoid or worm-like process, anterior and posterior, and lastly the linear furrow, called by Herophilus calamus scriptorius.

In the account of the thoracic organs equal accuracy may be recognized. He distinguishes the pleura by the name of inclosing membrane (umen upezokos, membrana succingens), and remarks its similitude in structure to that of the peritoneum, and the covering which it affords to all the organs. The pericardium also he describes as a membranous sac with a circular basis corresponding to the base of the heart and a conical apex; and after an account of the tunics of the arteries and veins, he speaks shortly of the lung, and more at length of the heart, which, however, he takes somepains to prove not to be muscular, because it is harder, its fibres are differently arranged, and its action is incessant, whereas that of muscle alternates with the state of rest; he gives a good account of the valves and of the vessels; and notices especially the bony ring formed in the heart of the horse, elephant and other large animals.

The description of the abdominal organs, and of the kidneys and urinary apparatus, is still more minute, and in general accurate. Our limits, however, do not permit us to give any abstract of them; and it is sufficient in general to say that Galen gives correct views of the arrangement of the peritoneum and omentum, and distinguishes accurately the several divisions of the alimentary canal and its component tissues. In the liver, which he allows to receive an envelope from the peritoneum, he admits, in imitation of Erasistratus, a proper substance or parenchyma, interposed between the vessels, and capable of removal by suitable dissection. His description of the organs of generation is rather brief, and is, like most of his anatomical sketches, too much blended with physiological dogmas.

This short sketch may communicate some idea of the condition of anatomical knowledge in the days of Galen, who indeed is justly entitled to the character of rectifying and digesting, if not of creating, the science of anatomy among the ancients. Though evidently confined, perhaps entirely by the circumstances of the times, to the dissection of brute animals, so indefatigable and judicious was he in the mode of acquiring knowledge, that many of his names and distinctions are still retained with advantage in the writings of the moderns. Galen was a practical anatomist, and not only describes the organs of the animal body from actual dissection, but gives ample instructions for the proper mode of exposition. His language is in general clear, his style as correct as in most of the authors of the same period, and his manner is animated. Few passages in early science are indeed so interesting as the description of the process for demonstrating the brain and other internal organs which is given by this patient and enthusiastic observer of nature. To some it may appear absurd to speak of anything like good anatomical description in an author who writes in the Greek language, or anything like an interesting and correct manner in a writer who flourished at a period when taste was depraved or extinct and literature corrupted—when the philosophy of Antoninus and the mild virtues of Aurelius could do little to soften the iron sway of Lucius Verus and Commodus; but the habit of faithful observation in Galen seems to have been so powerful that in the description of material objects, his genius invariably rises above the circumstances of his age. Though not so directly connected with this subject, it is nevertheless proper to mention that he appears to have been the first anatomist who can be said, on authentic grounds, to have attempted to discover the uses of organs by vivisection and experiments on living animals. In this manner he ascertained the position and demonstrated the action of the heart; and he mentions two instances in which, in consequence of disease or injury, he had an opportunity of observing the motions of this organ in the human body. In short, without eulogizing an ancient author at the expense of critical justice, or commending his anatomical descriptions as superior to those of the moderns, it must be admitted that the anatomical writings of the physician of Pergamum form a remarkable era in the history of the science; and that by diligence in dissection and accuracy in description he gave the science a degree of importance and stability which it has retained through a lapse of many centuries.

The death of Galen, which took place at Pergamum in the seventieth year of his age and the 200th of the Christian era, may be regarded as the downfall of anatomy in ancient times. After this period we recognize only two names of any celebrity in the history of the science—those of Soranus and Oribasius, with the more obscure ones of Meletius and Theophilus, the latter the chief of the imperial guard of Heraclius.

Soranus, who was an Ephesian, and flourished under the emperors Trajan and Hadrian, distinguished himself by his researches on the female organs of generation. He appears to have dissected the human subject; and this perhaps is one reason why his descriptions of these parts are more copious and more accurate than those of Galen, who derived his knowledge from the bodies of the lower animals. He denies the existence of the hymen, but describes accurately the clitoris. Soranus the anatomist must be distinguished from the physician of that name, who was also a native of Ephesus.


Oribasius, who was born at Pergamum, is said to have been at once the friend and physician of the emperor Julian, and to have contributed to the elevation of that apostate to the imperial throne. For this he appears to have suffered the punishment of a temporary exile under Valens and Valentinian; but was soon recalled, and lived in great honour till the period of his death (387). By le Clerc, Oribasius is regarded as a compiler; and indeed his anatomical writings bear so close a correspondence with those of Galen that the character is not altogether groundless. In various points, nevertheless, he has rendered the Galenian anatomy more accurate; and he has distinguished himself by a good account of the salivary glands, which were overlooked by Galen.

To the same period generally is referred the Anatomical Introduction of an anonymous author, first published in 1618 by Lauremberg, and afterwards by C. Bernard. It is to be regarded as a compilation formed on the model of Galen and Oribasius. The same character is applicable to the treatises of Meletius and Theophilus.

The decline indicated by these languid efforts soon sank into a state of total inactivity; and the unsettled state of society during the latter ages of the Roman empire was extremely unfavourable to the successful cultivation of science. The sanguinary conflicts in which the southern countries of Europe were repeatedly engaged with their northern neighbours between the 2nd and 8th centuries tended gradually to estrange their minds from scientific pursuits; and the hordes of barbarians by which the Roman empire was latterly overrun, while they urged them to the necessity of making hostile resistance, and adopting means of self-defence, introduced such habits of ignorance and barbarism, that science was almost universally forgotten. While the art of healing was professed only by some few ecclesiastics or by itinerant practitioners, anatomy was utterly neglected; and no name of anatomical celebrity occurs to diversify the long and uninteresting period commonly distinguished as the dark ages.

Arabian Physicians.

Anatomical learning, thus neglected by European nations, is believed to have received a temporary cultivation from the Asiatics. Of these, several nomadic tribes, known to Europeans under the general denomination of Arabs and Saracens, had gradually coalesced under various leaders; and by their habits of endurance, as well as of enthusiastic valour in successive expeditions against the eastern division of the Roman empire, had acquired such military reputation as to render them formidable wherever they appeared. After a century and a half of foreign warfare or internal animosity, under the successive dynasties of the Omayyads and Abbasids, in which the propagation of Islam was the pretext for the extinction of learning and civilization, and the most remorseless system of rapine and destruction, the Saracens began, under the latter dynasty of princes, to recognize the value of science, and especially of that which prolongs life, heals disease and alleviates the pain of wounds and injuries. The caliph Mansur combined with his official knowledge of Moslem law the successful cultivation of astronomy; but to his grandson Mamun, the seventh prince of the line of the Abbasids, belongs the merit of undertaking to render his subjects philosophers and physicians. By the directions of this prince the works of the Greek and Roman authors were translated into Arabic; and the favour and munificence with which literature and its professors were patronized speedily raised a succession of learned Arabians. The residue of the rival family of the Omayyads, already settled in Spain, was prompted by motives of rivalry or honourable ambition to adopt the same course; and while the academy, hospitals and library of Bagdad bore testimony to the zeal and liberality of the Abbasids, the munificence of the Omayyads was not less conspicuous in the literary institutions of Cordova, Seville and Toledo.

Notwithstanding the efforts of the Arabian princes, however, and the diligence of the Arabian physicians, little was done for anatomy, and the science made no substantial acquisition. The Koran denounces as unclean the person who touches a corpse; the rules of Islam forbid dissection; and whatever their instructors taught was borrowed from the Greeks. Abu-Bekr Al-Rasi, Abu-Ali Ibn-Sina, Abul-Qasim and Abul Walid ibn Rushd, the Rhazes, Avicenna, Abulcasis and Averroes of European authors, are their most celebrated names in medicine; yet to none of these can the historian with justice ascribe any anatomical merit. Rhazes has indeed left descriptions of the eye, of the ear and its meatus, and of the heart; and Avicenna, Abul-Qasim and Averroes give anatomical descriptions of the parts of the human body. But of these the general character is, that they are copies from Galen, sometimes not very just, and in all instances mystified with a large proportion of the fanciful and absurd imagery and inflated style of the Arabian writers. The chief reason of their obtaining a place in anatomical history is, that by the influence which their medical authority enabled them to exercise in the European schools, the nomenclature which they employed was adopted by European anatomists, and continued till the revival of ancient learning restored the original nomenclature of the Greek physicians. Thus, the cervix, or nape of the neck, is nucha; the oesophagus is meri; the umbilical region is sumen or sumac; the abdomen is myrach; the peritoneum is siphac; and the omentum, zirbus.

From the general character now given justice requires that we except Abdallatif, the annalist of Egyptian affairs. This author, who maintains that it is impossible to learn anatomy from books, and that the authority of Galen must yield to personal inspection, informs us that the Moslem doctors did not neglect opportunities of studying the bones of the human body in cemeteries; and that he himself, by once examining a collection of bones in this manner, ascertained that the lower jaw is formed of one piece; that the sacrum, though sometimes composed of several, is most generally of one; and that Galen is mistaken when he asserts that these bones are not single.

School of Bologna.

The era of Saracen learning extends to the 13th century; and after this we begin to approach happier times. The university of Bologna, which, as a school of literature and law, was already celebrated in the 12th century, became, in the course of the following one, not less distinguished for its medical teachers. Though the misgovernment of the municipal rulers of Bologna had disgusted both teachers and students, and given rise to the foundation of similar institutions in Padua and Naples,—and though the school of Salerno, in the territory of the latter, was still in high repute,—it appears, from the testimony of M. Sarti, that medicine was in the highest esteem in Bologna, and that it was in such perfection as to require a division of its professors into physicians, surgeons, physicians for wounds, barber-surgeons, oculists and even some others. Notwithstanding these indications of refinement, however, anatomy was manifestly cultivated rather as an appendage of surgery than a branch of medical science; and according to the testimony of Guy de Chauliac, the cultivation of anatomical knowledge was confined to Roger of Parma, Roland, Jamerio, Bruno, and Lanfranc or Lanfranchi of Milan; and this they borrowed chiefly from Galen.


In this state matters appear to have proceeded with the medical school of Bologna till the commencement of the 14th century, when the circumstance of possessing a teacher of originality enabled this university to be the agent of as great an improvement in medical science as she had already effected in jurisprudence. This era, indeed, is distinguished for the appearance of Mondino (Mundinus), under whose zealous cultivation the science first began to rise from the ashes in which it had been buried. This father of modern anatomy, who taught in Bologna about the year 1315, quickly drew the curiosity of the medical profession by well-ordered demonstrations of the different parts of the human body. In 1315 he dissected and demonstrated the parts of the human body in two female subjects; and in the course of the following year he accomplished the same task on the person of a single female. But while he seems to have had sufficient original force of intellect to direct his own route, J. Riolan accuses him of copying Galen; and it is certain that his descriptions are corrupted by the barbarous leaven of the Arabian schools, and his Latin defaced by the exotic nomenclature of Avicenna and Rhazes. He died, according to G. Tiraboschi, in 1325.

Mondino divides the body into three cavities (ventres), the upper containing the animal members, as the head, the lower containing the natural members, and the middle containing the spiritual members. He first describes the anatomy of the lower cavity or the abdomen, then proceeds to the middle or thoracic organs, and concludes with the upper, comprising the head and its contents and appendages. His general manner is to notice shortly the situation and shape or distribution of textures or membranes, and then to mention the disorders to which they are subject. The peritoneum he describes under the name of siphac, in imitation of the Arabians, the omentum under that of zirbus, and the mesentery or eucharus as distinct from both. In speaking of the intestines he treats first of the rectum, then the colon, the left or sigmoid flexure of which, as well as the transverse arch and its connexion with the stomach, he particularly remarks; then the caecum or monoculus, after this the small intestines in general under the heads of ileum and jejunum, and latterly the duodenum, making in all six bowels. The liver and its vessels are minutely, if not accurately, examined; and the cava, under the name chilis, a corruption from the Greek koile, is trcated at length, with the emulgents and kidneys. His anatomy of the heart is wonderfully accurate; and it is a remarkable fact, which seems to be omitted by all subsequent authors, that his description contains the rudiments of the circulation of the blood. "Postea vero versus pulmonem est aliud orificium venae arterialis, quae portat sanguinem ad pulmonem a corde; quia cum pulmo deserviat cordi secundum modum dictum, ut ei recompenset, cor ei transmittit sanguinem per hanc venam, quae vocatur vena arterialis; est vena, quia portat sanguinem, et arterialis, quia habet duas tunicas; et habet duas tunicas, primo quia vadit ad membrum quod existit in continuo motu, et secundo quia portat sanguinem valde subtilem et cholericum.'' The merit of these distinctions, however, he afterwards destroys by repeating the old assertion that the left ventricle ought to contain spirit or air, which it generates from the blood. His osteology of the skull is erroneous. In his account of the cerebral membranes, though short, he notices the principal characters of the dura mater. He describes shortly the lateral ventricles, with their anterior and posterior cornua, and the choroid plexus as a blood-red substance like a long worm. He then speaks of the third or middle ventricle, and one posterior, which seems to correspond with the fourth; and describes the infundibulum under the names of lacuna and emboton. In the base of the organ he remarks, first, two mammillary caruncles, the optic nerves, which he reckons the first pair; the oculomuscular, which he accounts the second; the third, which appears to be sixth of the moderns; the fourth; the fifth, evidently the seventh; a sixth, the nervus vagus; and a seventh, which is the ninth of the moderns. Notwithstanding the misrepresentations into which this early anatomist was betrayed, his book is valuable, and has been illustrated by the successive commentaries of Alessandro Achillini, Jacopo Berengario and Johann Dryander (1500-1560).

Matthew de Gradibus, a native of Gradi, a town in Friuli, near Milan, distinguished himself by composing a series of treatises on the anatomy of various parts of the human body (1480). He is the first who represents the ovaries of the female in the correct light in which they were subsequently regarded by Nicolas Steno or Stensen (1638-1687).

Objections similar to those already urged in speaking of Mondino apply to another eminent anatomist of those times. Gabriel de Zerbis, who flourished at Verona towards the conclusion of the 15th century, is celebrated as the author of a system in which he is obviously more anxious to astonish his readers by the wonders of a verbose and complicated style than to instruct by precise and faithful description. In the vanity of his heart he assumed the title of Medicus Theoricus; but though, like Mondino, he derived his information from the dissection of the human subject, he is not entitled to the merit either of describing truly or of adding to the knowledge previously acquired. He is superior to Mondina, however, in knowing the olfactory nerves.


Eminent in the history of the science, and more distinguished than any of this age in the history of cerebral anatomy, Achillini of Bologna (1463-1512), the pupil and commentator of Mondino, appeared at the close of the 15th century. Though a follower of the Arabian school, the assiduity with which he cultivated anatomy has rescued his name from the inglorious obscurity in which the Arabian doctors have in general slumbered. He is known in the history of anatomical discovery as the first who described the two tympanal bones, termed malleus and incus. In 1503 he showed that the tarsus consists of seven bones; he rediscovered the fornix and the infundibulum; and he was fortunate enough to observe the course of the cerebral cavities into the inferior cornua, and to remark peculiarities to which the anatomists of a future age did not advert. He mentions the orifices of the ducts, afterwards described by Thomas Wharton (1610-1673). He knew the ileo-caecal valve; and his description of the duodenum, ileum and colon shows that he was better acquainted with the site and disposition of these bowels than any of his predecessors or contemporaries.


Not long after, the science boasts of one of its most distinguished founders. Berengario, commonly called Berenger of Carpi, in the Modenese territory, flourished at Bologna at the beginning of the 16th century. In the annals of medicine his name will be remembered not only as the most zealous and eminent in cultivating the anatomy of the human body, but as the first physician who was fortunate enough to calm the alarms of Europe, suffering under the ravages of syphilis, then raging with uncontrollable virulence. In the former character he surpassed both predecessors and contemporaries; and it was long before the anatomists of the following age could boast of equalling him. His assiduity was indefatigable; and he declares that he dissected above one hundred human bodies. He is the author of a compendium, of several treatises which he names Introductions (Isagogae), and of commentaries on the treatise of Mondino, in which he not only rectifies the mistakes of that anatomist, but gives minute and in general accurate anatomical descriptions.

He is the first who undertakes a systematic view of the several textures of which the human body is composed; and in a preliminary commentary he treats successively of the anatomical characters and properties of fat, of membrane in general (panniculus), of flesh, of nerve, of villus or fibre (filum), of ligament, of sinew or tendon, and of muscle in general. He then proceeds to describe with considerable precision the muscles of the abdomen, and illustrates their site and connexions by woodcuts which, though rude, are spirited, and show that anatomical drawing was in that early age beginning to be understood. In his account of the peritoneum he admits only the intestinal division of that membrane, and is at some pains to prove that Gentilis Fulgineus, who justly admits the muscular division also, is in error. In his account of the intestines he is the first who mentions the vermiform process of the caecum; he remarks the yellow tint communicated to the duodenum by the gall-bladder; and he recognizes the opening of the common biliary duct into the duodenum (quidam porus portans choleram.) In the account of the stomach he describes the several tissues of which that organ is composed, and which he represents to be three, and a fourth from the peritoneum; and afterwards notices the rugae of its villous surface. He is at considerable pains to explain the organs of generation in both sexes, and gives a long account of the anatomy of the foetus. He was the first who recognized the larger proportional size of the chest in the male than in the female, and conversely the greater capacity of the female than of the male pelvis. In the larynx he discovered the two arytenoid cartilages. He gives the first good description of the thymus; distinguishes the oblique situation of the heart; describes the pericardium, and maintains the uniform presence of pericardial liquor. He then describes the cavities of the heart; but perplexes himself, as did all the anatomists of that age, about the spirit supposed to be contained. The aorta he properly makes to arise from the left ventricle; but confuses himself with the arteria venalis, the pulmonary vein, and the vena arterialis, the pulmonary artery. His account of the brain is better. He gives a minute and clear account of the ventricles, remarks the corpus striatum, and has the sagacity to perceive that the choroid plexus consists of veins and arteries; he then describes the middle or third ventricle, the infundibulum or lacuna of Mondino, and the pituitary gland; and lastly, the passage to the fourth ventricle, the conarium or pineal gland, and the fourth or posterior ventricle itself, the relations of which he had studied accurately. He rectifies the mistake of Mondino as to the olfactory or first pair of nerves, gives a good account of the optic and others, and is entitled to the praise of originality in being the first observer who contradicts the fiction of the wonderful net and indicates the principal divisions of the carotid arteries. He enumerates the tunics and humours of the eye, and gives an account of the internal ear, in which he notices the malleus and incus.

French school.

Italy long retained the distinction of giving birth to the first eminent anatomists in Europe, and the glory she acquired in the names of Mondino, Achillini, Berenger and N. Massa, was destined to become more conspicuous in the labours of R. Columbus, G. Fallopius and Eustachius. While Italy, however, was thus advancing the progress of science, the other nations of Europe were either in profound ignorance or in the most supine indifference to the brilliant career of their zealous neighbours. The 16th century had commenced before France began to acquire anatomical distinction in the names of Jacques Dubois, Jean Fernel and Charles Etienne; and even these celebrated teachers were less solicitous in the personal study of the animal body than in the faithful explanation of the anatomical writings of Galen. The infancy of the French school had to contend with other difficulties. The small portion of knowledge which had been hitherto diffused in the country was so inadequate to eradicate the prejudices of ignorance, that it was either difficult or absolutely impossible to procure human bodies for the purposes of science; and we are assured, on the testimony of A. Vesalius and other competent authorities, that the practical part of anatomical instruction was obtained entirely from the bodies of the lower animals. The works of the Italian anatomists were unknown; and it is a proof of the tardy communication of knowledge that, while the structure of the human body had been taught in Italy for more than a century by Mondino and his followers, these anatomists are never mentioned by Etienne, who flourished long after.


Such was the aspect of the times at the appearance of Jacques Dubois (1478-1555), who, under the Romanized name of Jacobus Sylvius, according to the fashion of the day, has been fortunate in acquiring a reputation to which his researches do not entitle him. For the name of Dubois the history of anatomy, it is said, is indebted to his inordinate love of money. At the instance of his brother Francis, who was professor of eloquence in the college of Tournay at Paris, he devoted himself to the study of the learned languages and mathematics; but discovering that these elegant accomplishments do not invariably reward their cultivators with the goods of fortune, Dubois betook himself to medicine. After the acquisition of a medical degree in the university of Montpellier, at the ripe age of fifty-one Dubois returned to Paris to resume a course of anatomical instruction. Here he taught anatomy to a numerous audience in the college of Trinquet; and on the departure of Vidus Vidius for Italy was appointed to succeed that physician as professor of surgery to the Royal College. His character is easily estimated. With greater coarseness in his manners and language than even the rude state of society in his times can palliate, with much varied learning and considerable eloquence, he was a blind, indiscriminate and irrational admirer of Galen, and interpreted the anatomical and physiological writings of that author in preference to giving demonstrations from the subject. Without talent for original research or discovery himself, his envy and jealousy made him detest every one who gave proofs of either. We are assured by Vesalius, who was some time his pupil, that his manner of teaching was calculated neither to advance the science nor to rectify the mistakes of his predecessors. A human body was never seen in the theatre of Dubois; the carcases of dogs and other animals were the materials from which he taught; and so difficult even was it to obtain human bones, that unless Vesalius and his fellow-students had collected assiduously from the Innocents and other cemeteries, they must have committed numerous errors in acquiring the first principles. This assertion, however, is contradicted by J. Riolan, and afterwards by K. P. J. Sprengel and T. Lauth, the last of whom decidedly censures Vesalius for this ungrateful treatment of his instructor. It is certain that opportunities of inspecting the human body were by no means so frequent as to facilitate the study of the science. Though his mention of injections has led some to suppose him the discoverer of that art, he appears to have made no substantial addition to the information already acquired; and the first acknowledged professor of anatomy to the university of Paris appears in history as one who lived without true honour and died without just celebrity. He must not be confounded with Franciscus Sylvius (de le Boe), who is mentioned by F. Ruysch and M. V. G. Malacarne as the author of a particular method of demonstrating the brain.


Almost coeval may be placed Charles Etienne (1503-1564), a younger brother of the celebrated printers, and son to Henry, who Hellenized the family name by the classical appellation of Stephen (Stefanos.) It is uncertain whether he taught publicly. But his tranquillity was disturbed, and his pursuits interrupted, by the oppressive persecutions in which their religious opinions involved the family; and Charles Etienne drew the last breath of a miserable life in a dungeon in 1564. Etienne, though sprung of a family whose classical taste has been their principal glory, does not betray the same servile imitation of the Galenian anatomy with which Dubois is charged. He appears to have been the first to detect valves in the orifice of the hepatic veins. He was ignorant, however, of the researches of the Italian anatomists; and his description of the brain is inferior to that given sixty years before by Achillini. His comparison of the cerebral cavities to the human ear has persuaded F. Portal that he knew the inferior cornua, the hippocampus and its prolongations; but this is no reason for giving him that honour to the detriment of the reputation of Achillini, to whom, so far as historical testimony goes, the first knowledge of this fact is due. The researches of Etienne into the structure of the nervous system are, however, neither useless nor inglorious; and the circumstance of demonstrating a canal through the entire length of the spinal cord, which had neither been suspected by contemporaries nor noticed by successors till J. B. Senac (1693-1770) made it known, is sufficient to place him high in the rank of anatomical discoverers.


The French anatomy of the 16th century was distinguished by two circumstances unfavourable to the advancement of the science —extravagant admiration of antiquity, with excessive confidence in the writings of Galen, and the general practice of dissecting principally the bodies of the lower animals. Both these errors were much amended, if not entirely removed, by the exertions of a young Fleming, whose appearance forms a conspicuous era in the history of anatomy. Andreas Vesalius (1514-1564), a native of Brussels, after acquiring at Louvain the ordinary classical attainments of the day, began at the age of fourteen to study anatomy under the auspices of Dubois. Though the originality of his mind soon led him to abandon the prejudices by which he was environed, and take the most direct course for attaining a knowledge of the structure of the human frame, he neither underrated the Galenian anatomy nor was indolent in the dissection of brute animals. The difficulties, however, with which the practical pursuit of human anatomy was beset in France, and the dangers with which he had to contend, made him look to Italy as a suitable field for the cultivation of the science: and in 1536 we find him at Venice, at once pursuing the study of human anatomy with the utmost zeal, and requested, ere he had attained his twenty-second year, to demonstrate publicly in the university of Padua. After remaining here about seven years, Vesalius went by express invitation to Bologna, and shortly afterwards to Pisa; and thus professor in three universities, he appears to have carried on his anatomical investigations and instructions alternately at Padua, Bologna and Pisa, in the course of the same winter. It is on this account that Vesalius, though a Fleming by birth and trained originally in the French school, belongs, as an anatomist, to the Italian, and may be viewed as the first of an illustrious line of teachers by whom the anatomical reputation of that country was in the course of the 16th century raised to the greatest eminence.

Vesalius is known as the first author of a comprehensive and systematic view of human anatomy. The knowledge with which his dissections had furnished him proved how many errors were daily taught and learned under the broad mantle of Galenian authority; and he perceived the necessity of a new system of anatomical instruction, divested of the omissions of ignorance and the misrepresentations of prejudice and fancy. The early age at which he effected this object has been to his biographers the theme of boundless commendation; and we are told that he began at the age of twenty-five to arrange the materials he had collected, and accomplished his task ere he had completed his 28th year.

Soon after this period we find him invited as imperial physician to the court of Charles V., where he was occupied in the duties of practice and answering the various charges which were unceasingly brought against him by the disciples of Galen. After the abdication of Charles he continued at court in great favour with his son Philip II. To this he seems to have been led principally by the troublesome controversies in which his anatomical writings had involved him. It is painful to think, however, that even imperial patronage bestowed on eminent talents does not ensure immunity from popular prejudice; and the fate of Vesalius will be a lasting example of the barbarism of the times, and of the precarious tenure of the safety even of a great physician. On the preliminary circumstances authors are not agreed; but the most general account states that when Vesalius was dissecting, with the consent of his kinsmen, the body of a Spanish grandee, it was observed that the heart still gave some feeble palpitations when divided by the knife. The immediate effects of this outrage to human feelings were the denunciation of the anatomist to the Inquisition; and Vesalius escaped the severe treatment of that tribunal only by the influence of the king, and by promising to perform a pilgrimage to the Holy Land. He forthwith proceeded to Venice, from which he sailed with the Venetian fleet, under James Malatesta, for Cyprus. When he reached Jerusalem, he received from the Venetian senate a message requesting him again to accept the Paduan professorship, which had become vacant by the death of his friend and pupil Fallopius. His destiny, however, which pursued him fast, suffered him not again to breathe the Italian air. After struggling for many days with the adverse winds in the Ionian Sea, he was wrecked on the island of Zante, where he quickly breathed his last in such penury that unless a liberal goldsmith had defrayed the funeral charges, his remains must have been devoured by beasts of prey. At the time of his death he was scarcely fifty years of age.

To form a correct estimate of the character and merits of Vesalius, we must not compare him, in the spirit of modern perfection, with the anatomical authors either of later times or of the present day. Whoever would frame a just idea of this anatomist must imagine, not a bold innovator without academical learning, not a genius coming from a foreign country, unused to the forms and habits of Catholic Europe, nor a wild reformer, blaming indiscriminately everything which accorded not with his opinion; but a young student scarcely emancipated from the authority of instructors, whose intellect was still influenced by the doctrines with which it had been originally imbued,—a scholar strictly trained in the opinions of the time, living amidst men who venerated Galen as the oracle of anatomy and the divinity of medicine,—exercising his reason to estimate the soundness of the instructions then in use, and proceeding, in the way least likely to offend authority and wound prejudice, to rectify errors, and to establish on the solid basis of observation the true elements of anatomical science. Vesalius has been denominated the founder of human anatomy; and though we have seen that in this career he was preceded with honour by Mondino and Berenger, still the small proportion of correct observation which their reverence for Galen and Arabian doctrines allowed them to communicate, will not in a material degree impair the original merits of Vesalius. The errors which he rectified and the additions which he made are so numerous, that it is impossible, in such a sketch as the present, to communicate a just idea of them.

Besides the first good description of the sphenoid bone, he showed that the sternum consists of three portions and the sacrum of five or six; and described accurately the vestibule in the interior of the temporal bone. He not only verified the observation of Etienne on the valves of the hepatic veins, but he described well the vena azygos, and discovered the canal which passes in the foetus between the umbilical vein and the vena cava, since named ductus venosus. He described the omentum, and its connexions with the stomach, the spleen and the colon; gave the first correct views of the structure of the pylorus; remarked the small size of the caecal appendix in man; gave the first good account of the mediastinum and pleura and the fullest description of the anatomy of the brain yet advanced. He appears, however, not to have understood well the inferior recesses; and his account of the nerves is confused by regarding the optic as the first pair, the third as the fifth and the fifth as the seventh.

Previous Part     1 ... 75  76  77  78  79  80  81  82  83  84  85  86  87  88  89     Next Part
Home - Random Browse