HotFreeBooks.com
On Laboratory Arts
by Richard Threlfall
Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse

A screen (B) is placed close to the source, and is provided with a rocking or tilting motion (C) in its own plane. The source and screen are partly independent, and each is provided with a fine adjustment which serves to place it in position near the centre of curvature. The screen is so close to the pin-hole in fact that both the source and a point on the edge of the screen may be said to be at the centre of curvature of the mirror. The mirror is temporarily mounted so as to have its axis horizontal, in a cellar or other place of uniform temperature.

The final focussing to the centre of curvature is made by the fine adjustment screws; the image may be received on a bit of paper placed on the screen and overlapping the edge nearest the source. The screws are worked till the image has its smallest dimension and is bisected by the edge of the screen. The test consists in observing the appearance of the mirror surface while the screen is tilted to cut off the light, as seen by an eye placed at the edge of the screen, a peephole or eye lens being provided to facilitate placing the eye in a correct position. The screen screws are worked so as to gradually cut off the light, and the observer notes the appearance of the mirror surface. If the curves are perfect and spherical, the transition from complete illumination to darkness will be abrupt, and no part of the mirror will remain illuminated after the rest.

For astronomical purposes a parabolic mirror is required. In this case the disc may be partially screened by zonal screens, and the position of the image for different zones noted; the correctness or otherwise of the curvature may then be ascertained by calculation. A shorter way is to place the source just outside the focus, to be found by trial, and then, moving the extinction screen (now a separate appliance) to, say, five times the radius of curvature away, where the image should now appear, the suddenness of extinction may be investigated. This, of course, involves a corresponding modification of the apparatus.

Whether the tests indicate that a deepening of the Centre, i.e. increase of the curvature, or a flattening of the edges is required, at least two remedial processes are available. The "chisel and mallet" method of altering the size of the pitch, squares of the polisher may be employed, or paper or small pitch tools may be used to deepen the centre. The "chisel and mallet" method merely consists in removing pitch squares from a uniformly divided tool surface by means of the instruments mentioned. This removal is effected at those points at which the abrasion requires to be reduced.

When some practice is attained, I understand that it is usual to try for a parabolic form at once, as soon as the polishing commences. This is done by dividing the pitch surface by V-shaped grooves, the sides of the grooves being radii of the circular surface, so that the central parts of the mirror get most of the polishing action. If paper tools are used they must not be allowed much overhang, or the edges of the mirror betray the effects of paper elasticity. Most operators "sink" the middle, but the late Mr. Lassell, a most accomplished worker, always attained the parabolic form by reducing the curvature of the edges of a spherical mirror.

Sec. 72. Preparation of Flat Surfaces.

As Sir H. Grubb has pointed out, this operation only differs from those previously described in that an additional condition has to be satisfied. This condition refers to the mean curvature, which must be exact (in the case of flats it is of course zero) to a degree which is quite unnecessary in the manufacture of mirrors or lenses.

A little consideration will show that to get a surface flat the most straightforward method is to carry out the necessary and sufficient condition for three surfaces to fit each other impartially. If they each fit each other, they must clearly all be flat. To carry out the process of producing a flat surface, therefore, two tools are made, and the glass or speculum is ground first on one and then on the other, the tools being kept "in fit" by occasional mutual grinding. The grinding and polishing go on as usual. If paper is employed, care must be taken that the polisher is about the same size as the object to be polished.

There is a slight tendency to polish most at the edges; but if the sweeps are of the right shape and size, this may be corrected approximately. The best surfaces which have come under my notice are those prepared as "test surfaces" by Mr. Brashear of Alleghany, Pa, U.S.A. These I believe to be pitch polished. A pitch bed is prepared, I presume, in a manner similar to that described for rocksalt surfaces; but the working of the glass is an immense art, and one which I believe—if one may judge by results—is only known to Mr. Brashear.

In general, the effect of polishing will be to produce a convex or concave surface, quite good enough for most purposes, but distinctly faulty when tested by the interference fringes produced with the aid of the test plate. The following information therefore—which I draw from Mr. 'Cook—will not enable a student to emulate Mr. Brashear, but will undoubtedly help him to get a very much better surface than he usually buys at a high price, as exhibited on a spectroscope prism.

The only difference between this process and the one described for polishing lenses, lies in the fact that the rouge is put into the paper surface while the latter is wet with a dilute gum "mucilage." It is of course assumed that the object and the two tools have been finely ground and fit each other impartially. The paper is rubbed over with rouge and weak gum water. The tool, when dry, is applied to the flat ground surface (of the object), and is scraped with the three-cornered file chisel as formerly described. This process must be very carefully carried out. The paper must be of the quality mentioned, or may even be thinner and harder. The cross strokes should be more employed than in the case of the curved surfaces.

A good deal will depend on the method employed for supporting the work; it is in general better to support the tool, which may have a slate backing of any desired thickness, whereby the difficulty resulting from strains is reduced. The work must be mounted in such a way as to minimise the effect of changes of temperature. If a pitch bed is selected, Mr. Brashear's instructions for rock salt may be followed, with, of course, the obvious necessary modifications. See also next section.

Sec. 73. Polishing Flat Surfaces on Glass or on Speculum Metal.

The above process may be employed for speculum metal, or pitch may be used. In the latter case a fresh tool must be prepared every hour or so, because the metal begins to strip and leave bits on the polisher; this causes a certain amount of scratching to take place. As against this disadvantage, the process of polishing, in so far as the state of the surface is concerned, need not take an hour if the fine grinding has been well done.

For the finest work changes of temperature, as in the case of glass, cause a good deal of trouble, and the operator must try to arrange his method of holding the object so as to give rise to the least possible communication of heat from the hand.

The partial elasticity of paper, which is its defect as a polishing backing, is, I believe, partly counterbalanced by the difficulty of forming with pitch an exact counterpart tool without introducing a serious rise of temperature (i.e. warming the pitch). The rate of subsidence of the latter is very slow at temperatures where it is hard enough to work reliably as a polisher.

A student interested in the matter of flat surfaces will do well to read an account of Lord Rayleigh's work on the subject, Nature, vol. xlviii, 1893, pp. 212, 526 (or B. A. Reports, 1893). In the first of these communications Lord Rayleigh describes the method of using test plates, and shows how to obtain the interference fringes in the clearest manner.

For the ordinary optician a dark room and a soda flame afford all requisite information; and if a person succeeds in making three glass discs, say 6 inches in diameter, so flat that, when superposed in any manner, the interference fringes are parallel and equidistant, even to the roughest observation, he has nothing to learn from any book ever written on glass polishing. Lord Rayleigh has also shown how to use the free clean surface of water as a natural test plate.

Since the above was written the following details of his exact course of procedure have been sent to me by Mr. Brashear, and I hereby tender my thanks:-

"It really takes years to know just what to do when you reach that point where another touch either gives you the most perfect results attainable, or ruins the work you have already done. It has taken us a long time to find out how to make a flat surface, and when we were called upon to make the twenty-eight plane and parallel surfaces for the investigation of the value of the metre of the international standard, every one of which required an accuracy of one-twentieth of a wave length, we had a difficult task to perform. However, it was found that every surface had the desired accuracy, and some of them went far beyond it.

It is an advantage in making flat surfaces to make more than one at a time; it is better to make at least three, and in fact we always grind and 'fine' three together. In making speculum plates we get up ten or twelve at once on the lead lap. These speculum plates we can test as we go on by means of our test plane until we get them nearly flat. In polishing them we first make quite a hard polisher, forming it on a large test plane that is very nearly correct. We then polish a while on one surface and test it, then on a second and test it, and after a while we accumulate plates that are slightly concave and slightly convex. By working upon these alternately with the same polisher, we finally get our polisher into such shape that it approximates more and more to a flat surface, and with extreme care and slow procedure we finally attain the results desired.

All our flats are polished on a machine which has but little virtue in itself, unmixed with brains. Any machine giving a straight diametrical stroke will answer the purpose. The glass should be mounted so as to be perfectly free to move in every direction—that is to say, perfectly unconstrained. We mount all our flats on a piece of body Brussels carpet, so that every individual part of the woof acts as a yielding spring. The flats are held in place by wooden clamps at the edges, which never touch, but allow the bits of glass or metal to move slowly around if they are circular; if they are rectangular we allow them to tumble about as they please within the frame holding them.

For making speculum metal plates either plane or concave we use polishers so hard that they scratch the metal all over the surface with fine microscopic scratches. We always work for figure, and when we get a hard polisher that is in proper shape, we can do ever so many surfaces with it if the environments of temperature are all right. If we have fifty speculum flats to make, and we recently made three times that number, we get them all ready and of accurate surface with the hard polisher. Then we prepare a very soft polisher, easily indented when cold with the thumb nail. A drop of rouge and about three drops of water are put on the plate, and with the soft polisher about one minute suffices to clean up all the scratches and leave a beautiful black polish on the metal. This final touch is given by hand; if we do not get the polish in a few minutes the surface is generally ruined for shape, and we have to resort to the hard polisher again.

I assure you that nothing but patience and perseverance will master the difficulty that one has to encounter, but with these two elements 'you are bound to get there.'"

CHAPTER III

MISCELLANEOUS PROCESSES

Sec. 74. Coating Glass with Aluminium and Soldering Aluminium.

A process of coating glass with aluminium has been lately discovered, which, if I mistake not, may be of immense service in special cases where a strongly adherent deposit is required. My attention was first attracted to the matter by an article in the Archives des Sciences physiques et naturelles de Geneve, 1894, by M. Margot. It appears that clean aluminium used as a pencil will leave a mark on clean damp glass. If, instead of a pencil, a small wheel of aluminium—say as big as a halfpenny and three times as thick—is rotated on the lathe, and a piece of glass pressed against it, the aluminium will form an adherent, though not very continuous coating on the glass.

Working with a disc of the size described rotating about as fast as for brass-turning, I covered about two square inches of glass surface in about five minutes. The deposit was of very uneven thickness, but was nearly all thick enough to be sensibly opaque. By burnishing the brilliance is improved (I used an agate burnisher and oil), but a little of the aluminium is rubbed off. The fact that the burnisher does not entirely remove it is a sign of the strength of the adherence which exists between the aluminium and the glass. In making the experiment, care must be taken to have the glass quite clean—or at all events free from grease—in order to obtain the best results.

M. Margot has contributed further information to the Archives des Sciences physiques et naturelles (February 1895). He finds that adherence between aluminium and glass is promoted by dusting the glass with powders, such as rouge. There is no doubt that a considerable improvement is effected in this way; both rouge and alumina have in my hands greatly increased the facility with which the aluminium is deposited. M. Margot finds that zinc and magnesium resemble aluminium in having properties of adherence to glass, and, what is more, carry this property into their alloys with tin. Thus an alloy of zinc and tin in the proportions of about 92 per cent tin and 8 per cent zinc may be melted on absolutely clean glass, and will adhere strongly to it if well rubbed by an asbestos crayon.

A happy inspiration was to try whether these alloys would, under similar circumstances, adhere to aluminium itself, and a trial showed that this was indeed the case, provided that both the aluminium and alloy are scrupulously clean and free from oxide. In this way M. Margot has solved the problem of soldering aluminium. I have satisfied myself by trial of the perfect ease and absolute success of this method. The alloy of zinc and tin in the proportions above mentioned is formed at the lowest possible temperature by melting the constituents together. It is then poured so as to form thin sticks.

The aluminium is carefully cleaned by rubbing with a cuttle bone, or fine sand, and strong warm potash. It is then washed in water and dried with a clean cloth. The aluminium is now held over a clean flame and heated till it will melt the solder which is rubbed against it. The solder sticks at once, especially if rubbed with another bit of aluminium (an aluminium soldering bit) similarly coated. To solder two bits of aluminium together it is only necessary to tin the bits by this process and then sweat them together.

The same process applies perfectly to aluminium caused to adhere to glass by the previously mentioned process, and enables strong soldered contacts to be made to glass. In one case, while I was testing the method, the adhesion was so strong that the solder on contracting while cooling actually chipped the surface clean off the glass. In order to get over this I have endeavoured to soften the solder by mixing in a little of the fusible metal mercury amalgam; and though this prevents the glass from being so much strained, it reduces the adherence of the solder. It is a comfort to be able to solder aluminium after working for so many years by way of electroplating, or filing under solder. An alternative method of soldering aluminium will be described when the electroplating of aluminium is discussed, Sec. 138.

Gilding Glass. In looking over some volumes of the Journal fuer praktische Chemie, I came across a method of gilding glass due to Boettger (Journ. f. prakt. Chem. 103, p. 414). After many trials I believe I am in a position to give definite instructions as to the best way of carrying out this rather troublesome operation. The films of gold obtained by the process are very thick, and the appearance of the gold exceedingly fine. The difficulty lies in the exact apportionment of the reducing solution. If too much of the reducing solution be added, the gold deposits in a fine mud, and no coating is obtained. If, on the other hand, too little of the reducing solution be added, little or no gold is deposited. The secret of success turns on exactly hitting the proper proportions.

The reducing solution consists of a mixture of aldehyde and glucose, and the difficulty I have had in following Boettger's instructions arose from his specifying "commercial aldehyde" of a certain specific gravity which it was impossible to reproduce. I did not wish to specify pure aldehyde, which is not very easily got or stored, and consequently I have had to determine a criterion as to when the proportion of reducing solution is properly adjusted.

The aldehyde is best made as required. I employed the ordinary process as described in Thorpe's Dictionary of Applied Chemistry, by distilling alcohol, water, sulphuric acid, and manganese dioxide together. The crude product is mixed with a large quantity of calcium chloride (dry—not fused), and is rectified once. The process is stopped when the specific gravity of the product reaches 0.832 at 60 deg. F. The specific gravity of pure aldehyde is 0.79 nearly.

The following is a modification of Boettger's formula:-

Solution I

1 gram of pure gold is converted into chloride—got acid free—i.e. to the state represented by AuCl3, and dissolved in 120 cc. of water.

This solution is the equivalent of one containing 6.5 grains of trichloride to the ounce of water.

Solution II.

6 grams sodium hydrate.

100 grams water.

Solution III.

0.2 grams glucose (bought as pure).

12.6 cubic centimetres 95 per cent alcohol.

12.6 cubic centimetres water.

2.0 cubic centimetres aldehyde, sp. gr. 0.832.

To gild glass these solutions are used in the following proportions by volume:-

16 parts of No. I.

4 parts of No. II.

0.8 parts of No. III.

The glass is first cleaned well with acid and washed with water: it is then rinsed with Solution No. III. If it is desired to gild the inside of a glass vessel, Solution No. III. may be placed in the vessel first, and the walls of the vessel rinsed round carefully. Solutions I. and II. are mixed separately and then added to III.—after about two minutes the whole is well shaken up.

If it be desired to gild a mirror of glass, the glass-plate is suspended face downwards in a dish of the mixed solutions—care being taken to rinse the glass with Solution III. first.

If the mixture darkens in from 7' to 10' in diffuse daylight and at 60 deg.F. it will gild well, and it generally pays to make a few trials in a test tube to arrive at this. If too much reducing solution is present the liquid will get dark more rapidly, and vice versa. The gilding will require several hours—as much as twelve hours may be needed.

The reaction is one of great chemical interest, being one of that class of reactions which is greatly affected by capillarity. Thus it occasionally happens that when the reducing solution is not in the right proportion, gold will be deposited at the surface of the liquid (so as to form a gilt ring on the inside of a test tube), the remainder of the gold going down as mud. The gold deposited is at first transparent to transmitted light and is deeply blue. I thought this might be due to a trace of copper or silver, but on carefully purifying the gold no change of colour was noted. If the reducing solution is present in slightly greater proportions than that given in the formula, the gold comes down with a richer colour, and has a tendency to form a mat surface and to separate from the glass. The gold which is deposited more slowly has a less rich colour but a brighter surface. The operation should be interrupted when a sufficient deposit has been obtained, because it is found that the thicker the deposit, the more lightly is it held to the glass surface.

Sec. 75. The Use of the Diamond-cutting Wheel.

A matter which is not very well known outside geological circles is the manipulation of the diamond-cutting wheel, and as this is often of great use in the physical laboratory, the following notes may not be out of place. I first became acquainted with the art in connection with the necessity which arose for me to make galvanometer mirrors out of fused quartz, and it was then that I discovered with surprise how difficult it is to obtain information on the point. I desire to express my indebtedness to my colleagues, Professor David and Mr. Smeeth, for the instruction they have given me. In what follows I propose to describe their practice rather than my own, which has been of a makeshift description. I will therefore select the process of cutting a slice of rock for microscopical investigation.

Sec. 76. Arming a Wheel.

Fig. 63.

A convenient wheel is made out of tin-plate, i.e. mild steel sheet, about one-thirtieth of an inch thick and seven inches in diameter. This wheel must be quite flat and true, as well as round; too much pains cannot be taken in securing these qualities. After the wheel is mounted, it is better to turn it quite true by means of a watch-maker's "graver" or other suitable tool. The general design of a rock-cutting machine will be clear from the illustration (Fig. 63).

The wheel being set up correctly, the next step is to arm it with diamond dust. For this purpose it is before all things necessary that real diamond dust should be obtained. The best plan is to procure a bit of "bort" which has been used in a diamond drill, and whose properties have therefore been tested to some extent. This is ground in a diamond mortar—or rather hammered in one—and passed through a sieve having at least 80 threads to the inch. The dust may be conveniently kept in oil.

To arm the wheel, a little dust and oil is taken on the finger, and laid on round the periphery of the wheel. A bit of flint or agate is then held firmly against the edge of the wheel and the latter is rotated two or three times by hand. The rotation must be quite slow—say one turn in half a minute—and the flint must be held firmly and steadily against the wheel. Some operators prefer to hammer the diamond dust into the wheel with a lump of flint, or agate, but there is a risk of deforming the wheel in the process. When a new wheel is set up, it may be necessary to repeat the above process once every half hour or so till the cutting is satisfactory, but when once a wheel is well armed it will work for a long time without further attention.

Sec. 77. Cutting a Section.

A wheel 7 inches in diameter may be rotated about 500 times per minute, and will give good results at that speed. The work, as will be seen from the diagram, is pressed against the edge of the wheel by a force, which in the case quoted was about the weight of eleven ounces. This was distributed along a cutting arc of three-quarters of an inch.

A convenient cutting lubricant is a solution of Castile soap in water, and this must be freely supplied; if the wheel gets dry it is almost immediately spoiled owing to the diamond dust being scraped off. In the figure the lubricant is supplied by a wick running into the reservoir. I have used both clock oil and ordinary gas-engine oil as lubricants, with equally satisfactory results. As to the speed of cutting, in the experiment quoted a bit of rather friable "gabbro," measuring three-quarters of an inch on the face by five-eighths of an inch thick, was cut clean through in six minutes, or by 3000 turns of the wheel. The travel of the edge was thus between 5000 and 6000 feet, or say 9000 feet, nearly 2 miles, per inch cut.

A good solid rock, like basalt, can be cut into slices of about 3/32 inch thick. A very loose rock is best boiled in Canada balsam, hard enough to set, before it is put against the wheel.

Instead of a grinding machine a lathe may be employed. The disc is, of course, mounted on the mandrel, and the work on the slide-rest. The latter must be disconnected from its feed screws, and a weight arranged over a pulley so as to keep the work pressed against the wheel by a constant force.

It may, perhaps, occur to the reader to inquire whether any clearance in the cut is necessary. The answer is that in all probability, and in spite of every care, the wheel will wobble enough to give clearance. If it does not, a little diamond dust rubbed into the side of the wheel, as well as the edge, will do all that is required. The edge also, after two or three armings, "burrs" a little, and thus provides a clearance naturally. It is not unlikely that in the near future the electric furnace will furnish us with a number of products capable of replacing the diamond as abrading agents. The cost of the small amount of diamond dust; required in a laboratory is so small, however, that it; is doubtful whether any appreciable economy will be, effected.

Sec. 78. Grinding Rock Sections, or Thin Slips of any Hard Material.

A note on this is, perhaps, worth making, for the same reasons as were given for note, Sec. 75, which it naturally follows. Just as trout-fishing; is described by Mr. Francis as the "art of fine and far off," [Footnote: In the Badminton Library, volume on Fishing.] section grinding may be called "the art of Canada balsam cooking," as follows. A section of rock having been cut from the lump as just described, it becomes; necessary to grind it down for purposes of microscopical investigation. For this purpose it is placed on a slip of glass, and cemented in position by Canada, balsam. Success in the operation of grinding the mounted section depends almost entirely on the way in which the mounting is done, and this in its turn depends on the condition to which the Canada has been brought.

To illustrate the operations, I will describe a specific case, viz. that of grinding the section of "gabbro"' above described, for microscopical purposes. One side of the section is probably sufficiently smooth and plane from the operation of the diamond wheel; if not, it must be ground by the finger on a slab of iron or gun-metal with emery and water, the emery passing a sieve of 80 threads to the inch. The glass base on which the section is to be mounted for grinding is placed on a bit of iron or copper plate over a Bunsen burner, and three or four drops of natural Canada balsam are placed upon it. The section is placed on the plate to heat at the same time.

The temperature must not rise so high as to cause any visible change in the Canada balsam, except a slight formation of bubbles, which rise to the surface, and can be blown off. The heating may require to be continued, say, up to twenty minutes. The progress of the operation is tested by examining the balsam as to its viscous properties.

An exceedingly simple and accurate way of testing is to dip a pair of ordinary forceps in the balsam, which may be stirred a little to secure uniformity. The forceps are introduced with the jaws in contact, and, as soon as withdrawn, the jaws are allowed to spring apart, thus drawing out a balsam thread. In a few moments the thread is cold, and if the forceps be compressed, this thread will bend.

The Canada must be heated until it is just in such a state that on bringing the jaws together the thread breaks. The forceps may open to about three-quarters of an inch. If the Canada is more viscous, so that the thread does not break, the section when cemented by it will most probably slip on the slide. On the other hand, if the balsam is more brittle, it will crumble away during the grinding.

Assuming that the proper point has been reached, the section is mounted with the usual precautions to avoid air bubbles, i.e. by dropping one edge on the balsam first. When all is cold, the surface of the section may be ground on an iron plate with emery passing the 80 sieve, till it is about 1/40 inch thick. From this point it must be reduced on ground glass by flours of emery and water; the rough particles of the former may be washed out for fine work.

The process of grinding should not take more than half an hour if the section is properly cut, etc. Beyond this point the allowable thickness must depend on the nature of the rock; a good general rule is to get the section just so thin that felspars show the yellow of the first order in a polarising, microscope. The section is then finished with, say, two minutes emery or water of Ayr-stone dust. It is better not to have the surface too smooth.

To transfer the section, the hard Canada round the sides is scraped away, and the section itself covered with some fresh Canada from the bottle. It is then warmed till it will slip off when a pin, or the invaluable dentist's chisel, is pressed against one side. If the section be very delicate, the cover slip should be placed over it before it is moved to the proper slide. The Canada used for mounting is not quite so hard as that employed in grinding, but it should be hard when cold, i.e. not sticky.

The art of preparing Canada balsam appears to consist in heating it under such conditions as will ensure its being exposed in thin layers. I have wasted a good deal of time in trying to bake Canada in evaporating basins, with the invariable result that it was either over or under-baked, and got dark in colour during the process.

On reviewing the process of rock section-cutting and mounting as just described, I cannot help thinking that, if properly systematised, it could be made much more rapid by the introduction of proper automatic grinding machinery. It also seems not improbable that a proper overhaul of available gums and cements would be found to lead to a cementing material less troublesome than Canada balsam.

Sec. 79. Cutting Sections of Soft Substances.

Though this art is fully treated of in books on practical biology, it is occasionally of use to the physicist, and the following note treats of that part of the subject which is not distinctly biological.

Soft materials, of which thin sections may be required, generally require to be strengthened before they are cut. For this purpose a variety of materials are available. The one most generally used is hard paraffin. The only point requiring attention is the embedding. The material must be dry.

This is accomplished by soaking in absolute alcohol, i.e. really absolute alcohol made by shaking up rectified spirit with potassium carbonate, previously dried, and then digesting for a day with large excess of quick-lime, making use of an inverted condenser and finally distilling off the alcohol without allowing it to come in contact with undried air. After soaking for some time in absolute alcohol, the material may be transferred to oil of bergamot, or oil of cloves, or almost any essential oil. After soaking in this long enough to allow the alcohol to diffuse out, the material may be lifted into a bath of melted paraffin (melting at, say, 51 deg. C.). The process of soaking is in some cases made to go more rapidly by exhausting, and, if the material will stand it, by raising the temperature over 100 deg. C. The soaking process may require minutes, hours, or days, according to the size and density of the material; but a few hours are usually sufficient.

When cold, the sections may be cut in any of the ordinary forms of microtome.

Another way of embedding is to soak in collodion, and then precipitate the latter in the material and around it by plunging into nearly absolute alcohol. The collodion yields a harder matrix than the paraffin.

Whatever form of cutting machine is employed, the art of sharpening the knife is the only one requiring any particular notice. The easiest way of obtaining a knife hard enough to sharpen, is to use a razor of good quality. If it has to be ground, it is best to do this on a fine Turkey stone which is conveniently rested on two bits of rubber tubing, to avoid jarring the blade. Many stones are slightly cracked, but on no account must the razor be dragged across a crack, or the edge will suffer.

The necessary and sufficient condition is that the razor must be worked in little sweeps over the stone, and pressed against the latter by little more than its own weight, and the grinding must be regular. The edge may be inspected under a microscope, and it must be perfectly smooth and even before it will cut sections. A finishing touch may be given on a leather strap, but it must be done skilfully, otherwise it is better omitted.

The necessity for providing exceptionally keen and sharp edges arose in the manufacture of phonographs, where the knife used to turn up the wax cylinders must leave a perfectly smooth surface. In 1889 this was being accomplished on an ivory lap fed with a trace of very fine diamond dust.

I have had this method in mind as a possible solution of the difficulty of razor-grinding, but have not tried it. I imagine one would use a soft steel or ivory slip rubbed over with fine diamond dust and oil by means of an agate. The lap used in the phonograph works was rotated at a high speed.

Sec. 80. On the Production of Quartz Threads.

[Footnote: Since this was written an article on the same subject by Mr. Boys appeared in the Electrician for 1896. The instructions therein given are in accordance with what I had written, and I have made no alteration in the text.]

In 1887 the important properties of fused quartz were discovered by Mr. Vernon Boys (Philosophical Magazine, June 1887, p. 489, "On the Production, Properties, and Some Suggested Uses of the Finest Threads"). A detailed study of the properties of quartz threads was made by Mr. Boys and communicated to the Society of Arts in 1889 (Journal of the Society of Arts, 1889). An independent study of the subject was made by the present writer in 1889 (Philosophical Magazine, July 1890, "On the Elastic Constants of Quartz Threads ").

There is also a paper in the Philosophical Magazine for 1894 (vol. xxxvii. p. 463), by Mr. Boys, on "The Attachment of Quartz Fibres." This paper also appeared in the Journal of the Physical Society at about the same date, together with an interesting discussion of the matter. In the American Journal, Electric Power, for 1894, there is a series of articles by Professor Nichols on "Galvanometers," in which a particular method of producing quartz threads is recommended. The method was originally discovered by Mr. Boys, but he seems to have made no use of it. A hunt through French and German literature on the subject has disclosed nothing of interest—nothing indeed which cannot be found in the papers mentioned.

Sec. 81. Quartz fibres have two great advantages over other forms of suspension when employed for any kind of torsion balance, from an ordinary more or less "astatic" galvanometer to the Cavendish apparatus. In the first place the actual strength of the fibres under longitudinal stress is remarkably high, ranging from fifty to seventy tons weight per square inch of section, and even more than this in the case of very fine threads; the second and more important point in favour of quartz depends on the wide limits within which cylindrical threads of this material obey the simplest possible law of torsion, i.e. the law that for a given thread carrying a given weight at a given temperature and having one end clamped, the twist about the axis of figure produced by a turning moment applied at the free end is proportional simply to the moment of the twisting forces, and is independent of the previous history of the thread.

It is to be noted, however, that the torsional resilience of quartz as tested by the above law is not so perfect but that our instrumental means allow us to detect its imperfections, and thus to satisfy ourselves that threads made of quartz are not things standing apart from all other materials, except in the sense that the limits within which they may be twisted without deviating in their behaviour from the law of strict proportionality by more than some unassigned small quantity, are phenomenally wide.

A torsion balance—if we except the case of certain spiral springs—is almost always called upon for information as to the magnitude of very small forces, and for this purpose it is not essential merely that some law of twisting should be exactly obeyed, but also that the resistance to twisting of the suspension should be small.

Now, regarded merely as a substance possessing elastic rigidity, quartz is markedly inferior to the majority of materials, for it is very stiff indeed; its utility depends as much as anything upon its great strength, for this allows us to, use threads of exceeding fineness. In addition to this it must be possible, and moreover readily possible, to obtain threads of uniform section over a sufficient length, or the rate of twist per unit length of the thread will vary in practice from point to point, so that the limits of allowable twist averaged over the whole thread may not be exceeded, and yet they may be greatly overpassed at particular points of the thread.

It is interesting to note that in the case of quartz we not only have a means for readily producing very uniform cylindrical threads, but that the limits of allowable rate of twist are so wide that a small departure from uniformity of section produces much less inconvenience than in the case of any other known substance.

Sec. 82. There are three methods generally in use for drawing quartz fibres, all depending on the fact that quartz when fused is so viscous that it may be drawn into threads of great length, without these threads breaking up into drops, or indeed without their showing any sign of doing so. The surface tension of the melted quartz must, however, be very considerable, as may be seen by examining the shape of a drop of the molten material, and this suffices to impress a rigidly cylindrical form upon the thread, the great viscosity apparently damping down all oscillation.

The first method is the one originally employed by Mr. Boys. A needle of quartz is melted somewhere in its length and is then drawn out rapidly by a light arrow, to which one end of the needle is attached, and which is projected from a kind of crossbow.

A modification of this method, which the writer has found of service when very thick threads are required, is to replace the bow and arrow by a kind of catapult.

The third method, which yields threads of almost unmanageable fineness, depends on the experimental fact that when a fine point of quartz is held in a high pressure oxygen gas blow-pipe flame, the friction of the flame gases suffices to overcome the tendency of the capillary forces to produce a spherical drop, and actually causes a fine thread to be projected outwards in the direction of the flame.

Sec. 83. A preliminary operation to any method is the production of a stick of fused quartz. This is managed as follows. A rock crystal or quartz pebble is selected and examined. It must be perfectly white, transparent, and free from dirt. Surface impurity can of course be got rid of by means of a grindstone. The crystal is placed in a perfectly clean Stourbridge clay crucible, furnished with a cover, and heated to bright redness for about an hour in a clean fire or in a Fletcher's gas furnace. The contents of the crucible are turned out when sufficiently cool on to a clean brick or bit of slate. It will be found that the crystal is completely broken up and the fragments must be examined in case any of them have become contaminated by the crucible, but this will not have happened if the temperature did not rise beyond a bright red heat.

The heap of fragments being found satisfactory, the next thing is to fuse some of the pieces together. Unless the preliminary heating has been efficiently carried out this will prove an annoying task, because a rock crystal generally contains so much water that it splinters under the blow-pipe in a very persistent manner. There are two ways of assembling the fragments. One is to place two tiles or bricks on edge about the heap of quartz lying upon a third tile, so that the heap occupies the angular corner or nook formed by the tiles (Fig. 64).

The oxygas blow-pipe previously described is adjusted to give its hottest flame, the bags being weighted by at least two hundredweight, if of the size described (see Sec. 15).

The tip of the inner cone of the blow-pipe is brought to bear directly upon one of the fragments, and if the operation is performed boldly it will be found that the surface of the fragment can be fused, and the fragment thus caused to hold together before the lower side gets hot enough to suffer any contamination from the tile or brick. A second fragment may be treated in the same way, and then a third, and so on.

Finally, the fragments may be fused together slightly at the corners, and a stick may thus be formed. Of course a good deal of cracking and splitting of the fragments takes place in the process; the best pieces to operate upon are those which are well cracked to begin with, and that in such a way that the little fragments are interlocked.

An alternative method which has some advantages is to arm a pair of forceps with two stout platinum jaws, say an inch and a half long, and flattened a little at the ends. The fragments are held in these platinum forceps and the blow-pipe applied as before. This method works very well in adding to a rod which has already been partly formed, but the jaws require constant renewals. The first fragment which is fused sufficiently to cohere may also be fused to a bit of tobacco pipe, or hard glass tube or rod, and the quartz stick gradually built up by fusing fresh pieces on to the one already in position.

Fig. 64.

Since the glass or pipeclay will contaminate the quartz which has been fused on to it, it is necessary to discard the end pieces at the close of the operation. A string of fragments having been collected and stuck together, the next step is to fuse them down into a uniform rod. This is easily done by holding the string in the blow-pipe flame and allowing it to fuse down. Twisting the fused part has a good effect in assisting the operation. It is desirable to use a large jet and as powerful a flame as can be obtained during this part of the operation.

The final result should be a rod, say two or three inches long and one-eighth of an inch thick, which will in most cases contain a large number of air bubbles. Since the presence of drawn-out bubbles cannot be advantageous, it is often desirable to get rid of them, and this can conveniently be done at the present stage. The process at best is rather tedious; it consists in drawing the quartz down very fine before an intense flame, in order to allow the bubbles to get close enough to the surface to burst. A considerable loss of material invariably occurs during the process; for whenever the thin rod separates into two bits the process of flame-drawing of threads goes on, and entails a certain waste; moreover, the quartz in fine filaments is probably partially volatilised.

Sooner or later, however, a sufficient length of bubble-free quartz can be obtained. It must not be supposed that it is always necessary to eliminate bubbles as perfectly as is contemplated in the foregoing description of the treatment, but for special purposes it may be essential to do so, and in any case the reader's attention is directed to a possible source of error.

It may be mentioned in connection with this matter that crystals of quartz may look perfectly white and clear, and yet contain impurity. For instance, traces of sodium are generally present, and lithium was found in large spectroscopic quantity in five out of six samples of the purest crystals in my laboratory. The presence of lithium in rock crystal has also been detected by Tegetmeier (Vied. Ann, xli. p. 19, 1890).

After some practice in preparing rods and freeing them of bubbles the operator will notice a distinct difference in the fusibility of the samples of quartz he investigates, though all may appear equally pure to the unaided eye. It should be mentioned, however, that high infusibility cannot always be taken as a test of purity, for the most infusible, or rather most viscous, sample examined by the writer contained more lithium than some less viscous samples.

Fig. 65.

During the process of freeing the quartz from bubbles the lithium and sodium will be found to burn away, or at all events to disappear.

A rod of quartz, say three inches long, one-sixteenth of an inch in diameter, and free from bubbles for half an inch of its length, even when examined by a strong lens, is suitable for drawing into threads. The rod is manipulated exactly in the manner described under glass-blowing, and is finally drawn down at the bubble free part into a needle, say 0.02 inch in diameter (No. 25 on the Birmingham wire gauge), and 2 inches long.

Fig. 66.

There is one peculiarity about fused quartz which renders its manipulation easier than that of glass—it is impossible to break fused quartz, however suddenly it be thrust into the blow-pipe flame. A rod having a diameter of three-sixteenths of an inch—and perhaps much more—may be brought right up to the tip of the inner cone of the oxy-gas flame and held there-till one side fuses, the other being comparatively cool, without the slightest fear of precipitating a smash. In seven years' experience I have never seen a bit of once fused quartz broken by sudden heating; whether it might be done if sufficient precautions were taken I do not know.

The reason of the fortunate peculiarity of quartz in this respect is, I presume, to be found in the fact that quartz once it has been fused is really a very strong material indeed, and is also probably the least expansible substance known. From some experiments of the writer upon the subject, it may be concluded that at the most quartz which has been fused expands only about one-fifth as fast as flint-glass, at all events between 20 deg. and 70 deg. C.

Sec. 84. Drawing Quartz Threads.

The thick end of the rod of quartz is held in the fingers or occasionally in a clip. The end of the fine point is attached to a straw arrow by means of a little sealing-wax. The arrow is laid on the stock of a crossbow in the proper position for firing. See Figs. 67 and 68, which practically explain themselves.

The needle is heated by the blow-pipe till a minute length is in a state of uniform fusion; the arrow is then let fly, when it draws a thread out with it. The arrow is preferably allowed to strike a wooden target placed, say, 30 feet away from the bow, and a width of black glazed calico is laid under the line of fire to catch the thread or arrow if it falls short. The general arrangements will be obvious from the figure.

The bow is of pine in the case where very long thin threads are required, though for ordinary purposes I have found a bow of lance-wood succeed quite as well. The trigger of the bow consists of a simple pin passing through the stock and fastened at its lower end to a string connected with a board which can be depressed by foot. In the figure an ordinary trigger is shown, but the pin does just as well.

Fig 67.

The arrow is made out of about 6 inches of straw, plugged up aft by a small plug of pine or willow fastened in with sealing-wax, and projecting backwards one-eighth of an inch. This projection serves a double purpose: it gives a point of attachment for the quartz needle, and on firing the bow it forms a resisting anvil on which the string of the bow impinges. The head of the arrow is formed by a large needle stuck in with sealing-wax, and heavy enough to bring the centre of gravity of the arrow forward of one-third of its length, the condition of stability in flight.

Fig. 68.

It is not necessary to employ any feathering for these arrows; though I have occasionally used feathers or mica to "wing the shaft" no advantage has resulted therefrom.

To get fine threads a high velocity is essential. This is obtained by considering (and acting upon) the principles involved. The bow may be regarded as a doubly-tapering rod clamped at the middle. After deflection it returns towards its equilibrium position at a rate depending in general terms on the elastic forces brought into play, directly, and on the effective moment of inertia of the rod, inversely (see Rayleigh, Sound, vol. ii. chap. viii.) If the mass of the arrow is negligible compared with the bow, the rate at which the arrow moves is practically determined by that attained by the end of the bow, which is a maximum in crossing its equilibrium position.

The extent to which the arrow profits by this velocity depends on the way the bow is strung. It will be greatest when the string is perpendicular to the bow when passing its equilibrium position; or in other words, when the string is infinitely long. Since the string has mass, however, it is not permissible to make it too long, or its weight begins to make itself felt, and a point is soon reached at which the geometrical gain in string velocity is compensated for by the total loss of velocity due to the inertia of the string. In practice it is sufficient to use a string 10 per cent longer than the bow.

It is well to use a light fiddle string, served with waxed silk at the trigger catch; if this be omitted the gut gets worn through very quickly. In order to decide how far it is permissible to bend the bow, the quickest way is to make a rough experiment on a bit of the same plank from which the bow is to be cut, and then to allow a small factor of safety. In the figure the bow is of lance-wood and is more bent than would be suitable for pine.

The bow itself is tapered from the middle outwards just like any other bow. If thick threads are required, the above considerations are modified by the fact that quartz opposes a considerable resistance to drawing, and that consequently the arrow must not only have a high velocity, but a fair supply of energy as well; in other words, it must be heavy. A thin pine arrow instead of a straw generally does very well, but in this case the advantage of using pine for the bow vanishes; and in fact lance-wood does better, owing to the greater displacement which it will stand without breaking. This of course only means that a greater store of energy can be accumulated at one bending.

I had occasion to investigate whether the unavoidable spin of an arrow about its axis produces any effect on the thread, and for this purpose made arrows with inertia bars thrust through the head, i.e. an arrow with a bit of wire run through it, perpendicular to its length—forming a cross in fact—the arms of the cross being weighted at the extreme ends by shot. This form of arrow has a considerable moment of inertia about its longer axis, and consequently rotates less than a mere straw, provided that the couples tending to produce rotation are not increased by the cross arm, or the velocity too much reduced. Shooting one of these arrows slowly, I could see that it did not rotate, and when fired at a high velocity, it generally arrived at the target (placed at varying distances front bow) with the arms nearly horizontal, thus showing that it probably did not rotate much.

I did not succeed in this at the first trial, by any means. The threads got in this way were no better than those made with a single straw, whence we may conclude very provisionally that the spin of the arrow has only a small effect, if any, on the quality of the threads.

Feathering the arrow, in my experience, tends, if anything to make it spin more; for one thing, because it is practically impossible to lay the feathering on straight.

After the arrow is shot, it remains to gather in the thread, and if the latter is at all thin, we have a rather troublesome job. In a thread thirty or forty feet long, the most uniform part generally lies in the middle if the thread is thin, i.e. of the order of a ten-thousandth of an inch in diameter. If the thread is thick the most uniform part may be anywhere. The part of the thread required is generally best isolated by passing a slip of paper under it at each end and cementing the thread to the paper by means of a little paraffin or soft wax, and then cutting off the outer portions. One bit of paper may then be lifted off the calico, and the thread will carry the other bit. In this way the thread may be taken to a blackened board, where it may be mounted for stock.

By passing the two ends of the thread under a microscope, or rather by breaking bits off the two ends and examining them together, it is easy to form an Opinion as to uniformity.

Mr. Boys has employed an optical method of examining threads, but the writer has invariably found a high-power microscope more convenient and capable of giving more exact information as to the diameter of the threads.

The beginner—or indeed the practised hand—need not expect to get a thread of the exact dimensions required at the first shot. A little experience is necessary to enable one to judge of the right thickness of the needle for a thread of given diameter. The threads are so easily shot, however, that a few trials take up very little time and generally afford quite sufficient experience to enable a thread of any required diameter to be prepared.

It is no use attempting to heat an appreciable length of needle; if this be done the thread almost invariably has a thick part about the middle of its length.. It is sufficient to fuse at most about one-twentieth of an inch along the needle before firing off the bow. This can be done by means of the smaller oxygas blow-pipe jet described in the article on blow-pipes for glass-blowing, Sec. 14. The flame must of course be turned down so as to be of a suitable size. A sufficiently small flame may be got from almost any jet.

If the needle be not equally heated all round, the thread tends to be curly; indeed by means of the catapult, threads may be pulled which, when broken, tend to coil up like the balance-springs of watches, if only care be taken to have one side of the needle much hotter than the other.

Sec. 85. When examining bits of threads, say thicker than the two-thousandth of an inch, under the microscope it is convenient to use a film of glycerine stained with some kind of dye, in order to render the thread more sharply visible. The thread is mounted beneath a cover slip, and a drop of the stained glycerine allowed to run in. Such a treatment gives the image of the thread a sharply defined edge 3 and the contrast between the whiteness of the thread and the colour of the background allows measurements to be made with great ease.

On the whole the easiest way of measuring the diameter of a thick thread is to use a measuring microscope, i.e. one in which the lens system can be displaced along a plane bed by means of a finely cut micrometer screw. The instruments made by the Cambridge Scientific Instrument Company do fairly well. Direct measurements up to 0.0001 inch are easily made by means of a microscope provided with a Zeiss "A" objective, and rather smaller differences of thickness can be made out by it. For thin threads the method next to be described is more fitting, because higher powers can be more conveniently used.

In this method an ordinary microscope is employed together with a scale micrometer, and either an eyepiece micrometer, or a camera and subsidiary scale. The eyepiece micrometer is the more convenient. If a camera be employed, i.e. such an one as is supplied by Zeiss, it is astonishing how the accuracy of observation may be increased by attending carefully to the illumination of both the subsidiary scale and of the thread. The two images should be as far as possible of equal brightness, and for this purpose it will be found requisite to employ small screens.

The detail of making a measurement by means of the micrometer eyepiece is very simple. The thread is arranged on the stage so as to point towards the observer, and the apparent diameter is read off on the eyepiece scale. In order to calibrate the latter it is only necessary to replace the thread by the stage micrometer, and to observe the number of stage micrometer divisions occupying the space in the eyepiece micrometer formerly occupied by the thread. It is essential that both thread and stage micrometer should occupy the same position in the field, for errors due to unequal distortion may otherwise become of importance. For this reason it is best to utilise the centre of the field only.

The same remark applies to measurements by means of the camera, where the image of the thread is projected against the reflected image of the subsidiary scale laid alongside the microscope. In this case the value of the subsidiary scale divisions must be obtained from the divisions of the stage micrometer, coinciding as nearly as possible with the position occupied by the thread. Before commencing a measurement the screens are moved about till both images appear equally bright.

Threads up to about one twenty-thousandth of an inch in diameter may be sufficiently well measured by means of a Zeiss "4 centimetre apochromatic object-glass" and an eyepiece "No. 6" with sixteen centimetre tube length. [Footnote: The objective certainly had "4 cm." marked on it, but the focal length appeared to be about I.5 mm. only.]

Sec. 86. Drawing Threads by the Catapult.

The bow-and-arrow method fails when threads of a greater diameter than about 0.0015 inch are required—at least if any reasonable uniformity be demanded, and no radical change in the bow and arrow be carried out.

Thus in the writer's laboratory a thread of about this diameter, within 1/10000 of an inch-13 inches long and free from air bubbles—was required. A fortnight's work by a most skilful operator only resulted in the production of two lengths satisfying the conditions.

The greatest loss of time occurs in the examination of the thread by means of the microscope.

Threads for galvanometer suspensions are conveniently from 0.0001 to 0.0004 inch in diameter, and are much more easily made and got uniform than thicker threads, to the production of which the catapult method applies.

A reference to the diagram will make the construction of the instrument quite clear. The moving end of the quartz is attached to a small boxwood slider working on a tubular girder or between wires. The quartz is secured in position by clamps shown at A and B, and motion is imparted to the slider by a stretched piece of catapult elastic (C). An easy means of regulating the pull of the elastic is to hold it back by a loop of string whose length can be varied by twisting it round a pin.

Fig. 69. [Footnote: For greater clearness of drawing, the tube carrying the slider is shown somewhat higher above the base than is convenient in practice; and the slide itself is shown too thin in the direction of the hole through it.]

Since it is not permissible to allow the slider to rebound at the end of its journey, some such arrangement of breaks as is shown must be adopted. In the diagram the bottom of the slider runs on to a brass spring between the girder and the base of the appliance, and so gets jammed; the spiral spring acts merely as an additional guard. The diagram does not show the lower spring very clearly; it is a mere strip lying in the groove.

A rod of quartz, with a needle at one end, is prepared as before and secured in the clamps. During the operation of fastening down the clamps, there is some danger of breaking the needle, and consequently it is advisable to soften the latter before and while adjusting the second clamp.

The process of drawing a thread by this method is exactly similar to the operation already described in connection with the arrow method. Though short thick threads form the product generally obtained from the catapult, it must not be supposed that thin threads cannot be obtained in this way. If a short length of a very fine needle be heated, it will be found to yield threads quite fine enough for ordinary suspension purposes, but naturally not so uniform as those obtained from the 40-foot lengths obtainable by the bow-and-arrow method.

It is easy to make spiral quartz springs resembling watch balance-springs by means of the catapult. All that is necessary is to see that the quartz is rather unequally heated before the shot is fired. In the future it is by no means impossible that such springs may have a real value, for the rigidity of quartz is known to increase as temperature rises. Hence it is probable that the springs would become stiffer as temperature rises, even though they work chiefly by bending, and little or not at all by twisting. As this is the kind of temperature variation required to compensate an uncompensated watch balance wheel, it may turn out to have some value.

Sec. 87. Drawing Threads by the Flame alone.

A stick of quartz is drawn down to a fine point, and the tip of this point is held in the blow-pipe flame in the position shown in Fig. 70.

Fig. 70.

The friction of the flame gases is found to be sufficient to carry forward the fused quartz and to draw it into threads in spite of the influence of the capillary forces. If a sheet of paper be suspended at a distance of two or three feet in front of the blow-pipe flame, it will be found to be covered with fine threads tangled together into a cobwebby mass. As this method is an exceedingly simple one of obtaining threads, I have endeavoured to reduce it to a systematic operation.

A sheet of cardboard, about two feet square, is painted dead black and suspended horizontally, painted side downwards (Fig. 70, A), at a height of about two feet above the blow-pipe flame. The latter is adjusted so as to point almost vertically upwards and towards the centre of the cardboard. A few half-inch pins are thrust through the card from the upper surface and pushed home; about one dozen pins scattered over the surface will be sufficient. Their object is to prevent the threads being carried away round the edge of the screen.

The flame from the jet described so often is fed from gas bags weighted to about eighty pounds per square foot of (one) surface, i.e. "4-foot" bags require from three to four hundredweight to give an advantageous pressure. [Footnote: The resulting threads were really too fine for convenient manipulation, so that unless extremely fine threads are required it will be better to reduce the pressure of the gases considerably.]

Two sticks of quartz are introduced and caused to meet just in front of the inner cone—the hottest part of the flame. They are then drawn apart so as to form a fine neck, which softens and is bent in the direction of motion of the flame gases. When fusion is complete the neck separates into two parts, and a thread is drawn from each of them. By alternately lightly touching the rods together, and drawing them apart, quite a mass of threads may be obtained in two or three minutes, when the process should be stopped. If too many threads get entangled in the pins, one gives one's self the unnecessary trouble of separating them. On taking down the card it will be found that the threads have been caught by the pins; but the card now being laid black side upwards, the former easily slip off the points.

Threads at least a foot long, and perhaps vastly longer, may be obtained by this method, and are extraordinarily fine. When I first read Professor Nichols' statement (Electric Power, 1894) as to the value of these fibres for galvanometer purposes, I was rather sceptical on the ground that the threads would tend to get annealed by being drawn gradually, instead of suddenly, from a place of intense heat to regions of lower temperature.

Now annealing threads by a Bunsen makes them rotten. The threads being immersed in the hot flame gases could only cool at the same rate as the gas, and it was not—and is not—clear to me that annealing of the threads can be avoided. On the other hand, it may be possible that a thread cooled slowly from the first does not suffer in the same way as a cold thread would do when annealed in a Bunsen flame.

Again the velocity of the gases is beyond doubt exceedingly high, so that the annealing, even supposing it to be deleterious, might not be carried very far. Threads drawn by this method and measured "dry," i.e. by mounting them on a slide without the addition of any liquid, turned out to have a diameter of about 1/20000 of an inch.

I do not think I could manage to mount such fine threads without very special trouble. All the threads lying on the board, however, were found in reality to consist of three or four separate threads, and there is no reason why several threads should not be mounted in parallel, provided, of course, that they are equally stretched and touching each other. Equality of tension in the mounting could be secured by making one attachment good, then cementing the other attachment to the other end of the threads, and "drawing" the two attachments slightly apart at the moment the cement commences to set. This method may turn out to be very valuable, for, so far as I can see, the carrying power would be increased without an increase of torsional stiffness of anything like so high an order as would be the case were one thread only employed. On the other hand, the law of torsion could hardly be quite so simple, at all events, to the second order of approximations.

Sec. 88. Properties of Threads.

A large number of experiments on the numerical values of the elastic constants of quartz threads have been made by Mr. Boys and his students, and by the writer. As the methods employed were quite distinct and the results wholly independent, and yet in good agreement with each other, a rounded average may be accepted with considerable confidence.

TENACITY OF QUARTZ FIBRES (BOYS).

Diameter of Thread.

Tenacity in Tons' Weight per Square Inch of Section.

Tenacity in Dynes per Square Centimetre.

Inches

Centimetres

0.00069

0.00175

51.7

8 X 109

0.00019

0.00048

74.5

11.5 X 109

Rounded mean of Boys' and Threlfall's results:

Young's Modulus at 20 deg. C,

5.6 X 1011 C.G.S.

Modulus of Simple Rigidity at 20 deg. C,

2.65 X 1011 C.G.S.

Modulus of Incompressibility,

1.4 X 1011 C.G.S.

Modulus of Torsion,

3.7 X 1011 C.G.S.

Approximate coefficient of linear expansion of quartz per degree between 80 deg. C. and 30 deg. C. is 0.0000017 (Threlfall = loc. cit.).

This must be regarded with some suspicion, as the data were not concordant. There is no doubt, however, about the extreme inexpansibility of quartz.

Temperature coefficient of modulus of torsional rigidity per degree centigrade, 22 deg. to 98 deg. C, 0.000133

Ditto, absolute simple rigidity, 0.000128 (Threlfall).

Limit of allowable rate of twist in round numbers is, one-third turn per centimetre, in a fibre 0.01 cm. diameter.

The limiting rate is probably roughly inversely as the diameter.

Attention must be called to the rapid increase in the torsional rigidity of these threads as the temperature rises. A quartz spiral spring-balance will be appreciably stronger in hot weather.

Sec. 89. In the majority of instances in which quartz threads are applied in the laboratory, it is desirable to keep the coefficient of torsion as small as possible, and hence threads are used as fine as possible.

It is convenient to remember that a thread 0.0014 cm. or 0.0007 inch in diameter breaks with a weight of about ten grammes, and may conveniently be employed to carry, say, five grammes. With threads three times finer the breaking strength per unit area increases, say, 50 per cent. In ordinary practice—galvanometric work for instance—where it is desirable to use a thread as fine and short as possible to sustain a weight up to, say, half a gramme, it will be found that fibres five centimetres long or over give no trouble through defect of elastic properties. A factor of safety of two is a fair allowance when loading threads.

No difficulty will be experienced in mounting threads having a diameter of 0.0002 inch or over. With finer threads it is necessary to employ very dark backgrounds (Mr. Boys uses the darkness of a slightly opened drawer), or the threads cannot be sufficiently well seen.

In the case of instruments in which threads remain highly twisted for long periods of time, the above rule as to the safe limit of twist does not allow of a sufficient margin; it is only applicable to galvanometric and similar purposes.

The cause of the increase in tenacity as the diameter diminishes is at present unknown. It is due neither to an effect of annealing (annealed threads are rotten), nor is it a skin effect, nor is it due to the cooling of the thread under higher capillary pressure. It is, however, possible that it may be associated with some kind of permanent set taken by the fibres during the stage of passage from the liquid to the solid state.

Sec. 90. On the Attachment of Quartz Fibres.

For many purposes it is sufficient to cement the fibres in position by means of ordinary yellow shellac, but where very great accuracy is aimed at, the shellac (being itself imperfectly elastic and exposed to shearing stress) imposes its imperfections on the whole system. This source of error can be got over by soldering the threads in position. Attempts were made by the writer in this direction, with fair success, in 1889, but as Mr. Boys has carried the art to a high degree of perfection, I will suppress the description of my own method and describe his in preference. It has, of course, been frequently repeated in my laboratory.

In many cases, however, if not in all, it may be replaced by Margot soldering, as already described, a note on the application of which to this purpose will follow.

A thread of the proper diameter having been selected, it is cut to the right length. With fine threads this is not always a perfectly easy matter. The best way is for the operator to station himself facing a good light, not sunlight, which is too tiring to the eye, but bright diffused light. The thread will be furnished with bits of paper stuck on with paraffin at both ends, as already described.

A rough sketch of the apparatus—or, at all events, two lines showing the exact length which the free part of the thread must have—are marked on a smooth board, and this is supported with its plane vertical. The thread is held against the board, and the upper piece of paper is stuck lightly to the board with a trace of soft wax, so that the lower edge of the paper is at any desired height above the upper mark. This distance is measured, and forms the length of thread allowed to overlap the support. A second bit of paper is attached below the lower mark, a margin for the attachment of the lower end being measured and left as before. The thread will be most easily seen if the board is painted a dead black.

If it is desired to attach the thread to its supports merely by shellac, this is practically all that needs to be done. The supports should resemble large pins. The upper support will be a brass wire in most cases, and will require to be filed away as shown in the sketch (Fig. 71). It is then coated with shellac by heating and rubbing upon the shellac. As previously noted, the shellac must not be overheated.

The thread is cut off below the lower slip of paper, and the upper support being conveniently laid in a horizontal position on another dead-black surface, the thread is carried to it and laid as designed against the shellac, which is now cold. When the thread is in place, a soldering iron is put against the brass wire, and the shellac gradually melted till it closes over the thread.

Fig. 71.

The iron is then withdrawn and the thread pulled away from the point for one-twentieth of an inch or less. This ensures that the thread makes proper contact with the cement, and also that it is free from kinks; of course, it must leave the cement in the proper direction. A similar process is next carried out with respect to the lower attachment, and the ends of the thread are neatly trimmed off.

Both ends of the thread being secured, the next step is to transfer the upper support to a clip stand, the suspended parts being held by hand, so that the weight comes on the thread very gradually. In this way it will be easily seen whether the thread is bent where it enters the shellac, and should this be the case, a hot iron must be brought up to the shellac and the error rectified.

When both the support and the suspended parts are brought nearly to the required bearing, the hot iron is held for a moment close up to each attachment, the hand being held close below but not touching the suspended parts, and both attachments are allowed to straighten themselves out naturally.

These details may appear tiresome, and so they are when written out at length, but the time occupied in carrying them out is very short, and quartz threads break easily, unless the pull upon them is accurately in the direction of their length at all points.

In the event of its being decided to attach the thread by soldering, the process is rather more expensive in time, but not otherwise more troublesome.

Fig. 72. Fig. 73.

The thread being cut as before to the proper length, little bits of aluminium foil are smeared all over with melted shellac and suspended from the thread replacing the paper slips before described. It is important that no paraffin should be allowed to touch the thread anywhere near a point intended to be soldered. The thread is hung up from a clip stand by one of the bits of foil, and the lower end is washed by dipping it into strong nitric acid for a moment and thence into water. The object of smearing the foils all over with shellac is to prevent them being acted upon by the acid. The threads are not very easily washed acid free, but the process may be assisted by means of a fine camel's-hair pencil.

Some silvering solution made as described (Sec. 65) is put into a test tube; the thread, after rinsing with distilled water, is lowered into the solution so far as is required, and is allowed to receive a coating of silver. It has been observed that the coating of silver must not be too thick—not sufficiently thick to be opaque. A watch may be kept on the process by immersing a minute strip of mica alongside the thread.

The silvered thread is rinsed with distilled water and allowed to dry.

Meanwhile the other end of the thread may be silvered. When both ends are silvered the process of coppering by electro deposit is commenced. A test tube is partially filled with a ten per cent solution of sulphate of copper, and several copper wires are dipped into it to form an anode. The thread is lowered carefully into the solution so as not to introduce air bubbles, and the silvered part is allowed to project far enough above the surface of the solution to come in contact with a fine copper wire. The circuit is closed through a Leclanche cell and a resistance box.

It is as well to begin with a fair resistance, say 100 ohms out in the box, and the progress of the deposit is watched by means of a low-power microscope set up in front of the thread. If the copper appears to come down in a granular form, the resistance is too small and must be increased; if no headway appears to be made, the resistance must be diminished.

As soon as a fair coat of copper has come down, i.e. when the diameter of the thread is about doubled, the process is interrupted. The thread is withdrawn, washed, dipped in a solution of chloride of zinc, and carefully tinned by dragging it over a small clean drop of solder on a soldering bit.

During this part of the process the shellac is apt to get melted if the iron is held too close, so that it is advisable to begin by making the thread somewhat over long. The end of the thread must only be trimmed off at the conclusion of the operation, i.e. after the thread is soldered up. The thread is attached to the previously tinned supports much in the same way as has been described under the head of shellac attachments. It does not very much matter whether both ends are coppered before one is soldered up or not. At the conclusion of the whole process the superfluous copper and silver are dissolved off by a little hot strong nitric acid applied on a glass hair pencil. This is best done by holding the thread horizontally with the assistance of clip stands.

If the thread is too delicate to bear brushing, the nitric acid may be applied by pouring out a big drop into a bit of platinum foil and holding this below the thread so as to touch it lightly. The dissolving of the copper and silver is, of course, followed by copious washing with hot water. This process is more laborious than might be imagined, but it may be shortened by heating the platinum foil supporting the water (Fig. 74).

Fig. 74

The washing part of the process is, in the opinion of the writer, the most difficult part of the whole business, and it requires to be very thorough, or the thread will end by drawing out of the solder. In many cases it is better to try to do without any application of nitric acid at all, but, of course, this involves silvering and coppering to exact distances from the ends of the thread—at all events, in apparatus where the effective length of the thread is narrowly prescribed.

It is important not to leave the active parts of the thread appreciably silvered, for the sake of avoiding zero changes due to the imperfect elasticity of the silver. In this soldering process ordinary tinman's solder may be employed; it must be applied very free from dust or oxide.

Sec. 91. Other Modes of soldering Quartz.

Thick rods of quartz may be treated for attachment by solder in the same way as glass was treated by Professor Kundt to get a foundation for his electrolytically deposited prisms. [Footnote: See Appendix at end of book.]

The application of a drop of a strong solution of platinum tetrachloride to the rod will, on drying, give rise to a film of the dry salt, and this may be reduced in the luminous gas flame. During the process, however, the quartz is apt to get rotten, especially if the temperature has been anything approaching a full red heat. The resulting platinum deposit adheres very strongly to the quartz, and may be soldered to as before. This method has been employed by the writer with success since 1887, and may even be extended to thick threads.

It was also found that fusible metal either stuck to or contracted upon clean quartz so as to make a firm joint. In the light of M. Margot's researches (already described), it occurred to me that perhaps my experience was only a special case of the phenomena of adhesion investigated with so much success by M. Margot. I therefore tried whether the alloy of tin and zinc used for soldering aluminium would stick to quartz, and instantly found that this was indeed the case.

Adhesion between the alloy and perfectly clean quartz takes place almost without rubbing. A rod of quartz thus "tinned" can be soldered up to anything to which solder will stick, at once. On applying the method to thick quartz threads, success was instantaneous (the threads were some preserved for ordinary galvanometer suspensions); but when the method was applied to very fine threads, great difficulty in tinning the threads was experienced. The operation is best performed by having the alloy on the end of an aluminium soldering bit, and taking care that it is perfectly free from oxide before the thread is drawn across it. There was no difficulty in soldering a thread "tinned" in this manner to a copper wire with tinman's solder, and the joint appeared perfect, the thread breaking finally at about an inch away from the joint.

I allow Mr. Boys' method to stand as I have written it, simply because I have not had time as yet to make thorough tests of the durability of "Margot" joints on the finest threads; but I have practically no doubt as to its perfect applicability, provided always that the solder can be got clean enough when melted on the bit. Very fine threads will require to be stretched before tinning, in order to enable them to break through the capillary barrier of the surface of the melted solder.

Sec. 92. Soldering.

It is almost unfair to the arts of the glass-blower or optician to describe them side by side with the humble trade of soldering. Nevertheless, no accomplishment of a mechanical kind is so serviceable to the physicist as handiness with the soldering bit; and, as a rule, there is no other exercise in which the average student shows such lamentable incapacity. The following remarks on the subject are therefore addressed to persons presumably quite ignorant of the way in which soldering is carried out, and do not profess to be more than of the most elementary character.

For laboratory purposes three kinds of solder are in general sufficient. One is the ordinary tinman's solder composed of lead and tin. The second is "spelter," or soft fusible brass, and the third is an alloy of silver and brass called silver solder.

Tinman's solder is used for most purposes where high temperatures are not required, or where the apparatus is intended to be temporary. The "spelter," which is really only finely granulated fusible brass, is used for brazing iron joints. The silver solder is convenient for most purposes where permanency is required, and is especially suited to the joining of small objects.

Sec. 93. Soft tinman's solder is made by melting together two parts of grain tin and one of soft lead—the exact proportions are not of consequence—but, on the other hand, the purer the constituents the better the solder. Within certain limits, the greater the proportion of tin the cleaner and more fusible is the solder. It is usually worth while to prepare the solder in the laboratory, for in this way a uniform and dependable product is assured. Good soft lead is melted in an iron ladle and skimmed; the temperature is allowed to rise very little above the melting-point. The tin is then added little by little, the alloy stirred vigorously and skimmed, and sticks of solder conveniently cast by sweeping the ladle over a clean iron plate, so as to pour out a thin stream of solder. If the solder be properly made it will have a mat and bright mottled surface, and will "crackle" when held up to the ear and bent.

Perhaps the chief precaution necessary in making solder is to exclude zinc. The presence of a very small percentage of this metal entirely spoils the solder for tinman's work by preventing its "running" or flowing smoothly under the soldering bit.

Fig. 75.

Fig. 76.

Fig. 77.

Sec. 94. Preparing a Soldering Bit.

The wedge-shaped edge of one of the forms of bit shown in the sketch is filed to shape and the bit heated in a fire or on a gas heater. A bit of rough sandstone, or even a clean soft brick, or a bit of tin plate having some sand sprinkled over it, is placed in a convenient position and sprinkled with resin.

As soon as the bit is hot enough to melt solder it is withdrawn and a few drops of solder melted on to the brick or its equivalent. The iron or bit is then rubbed to and fro over the solder and resin till the former adheres to and tins the copper head. It will be found advisable to tin every side of the point of the bit and to carry the tinning back at least half an inch from the edge.

If the solder obstinately refuses to adhere, the cause is to be sought in the oxidation of the copper, or of the solder, or both—in either case the result of too high a temperature or too prolonged heating. The simple remedy is to get the iron hot, and then to dress it with an old file, so as to expose a bright surface, which is instantly passed over the resin as a means of preserving it from oxidation. If the process above described be now carried out, it will be found that the difficulty disappears.

Before using the iron, wipe off any soot or coke or burned resin by means of an old rag. An iron tinned in this way is much to be preferred to one tinned by means of chloride of zinc.

A shorter and more usual method is carried out as follows: The solution of chloride of zinc is prepared by adding bits of zinc to some commercial hydrochloric acid diluted with a little (say 25 per cent) of water. The acid may conveniently be placed in a small glazed white jar (a jam pot does excellently), and this should only be filled to about one-quarter of its capacity. An excess of zinc may be added.

It may be fancy, but I prefer a soldering solution made in this way to a solution of chloride of zinc bought as a chemical product. The jar is generally mounted on a heavy leaden base, so as to avoid any danger of its getting knocked over, for nothing is so nasty or bad for tools as a bench on which this noxious liquid has been upset (Fig. 78).

Fig. 78.

To tin a soldering bit, a little of the fluid is dipped out of the jar on to a bit of tin plate bent up at the edges—a few drops is sufficient—and the iron is heated and rubbed about in the liquid with a drop of solder. If the iron is anything like clean it will tin at once and exhibit a very bright surface, but quite dirty copper may be tinned by dipping it for a moment in the liquid in the pot and then working it about over the solder. An iron so tinned remains covered with chloride of zinc, and this must be carefully wiped off if it is intended to use the iron with a resin or tallow flux in lead soldering.

One disadvantage of this process is that the copper bit soon gets eaten into holes and requires to be dressed up afresh. On the other hand, an iron so tinned always presents a nice clean solder surface until the next time it is heated, when it generally becomes very dirty and requires to be carefully wiped before using.

In my experience also an iron so tinned is more easily spoiled as to the state of its surface, "detinned," in fact, by overheating than when the tinning is carried out by resin and friction. When this happens, the shortest way out of the difficulty is the application of the old file so as to obtain a perfectly fresh surface. No one who knows his business ever uses an iron that is not perfectly clean and well tinned.

The iron may be cleaned from time to time by heating it red hot and quenching it in water to get rid of the oxide, which scales off in the process.

Sec. 95. Soft Soldering.

In the laboratory the chief application of the process is to copper soldering during the construction of electrical apparatus and to zinc soldering for general purposes.

In ninety-nine cases out of every hundred where difficulties occur their origin is to be traced to dirt. There seems to be some inexplicable kink in the human mind which renders it callous to repeated proofs of the necessity for cleaning surfaces which it is intended to solder. The slightest trace of albuminous or gelatinous matter or shellac will prevent solder adhering to most metals and the same remark applies in a measure to the presence of oxides, although these may be removed by chloride of zinc or prevented from forming by resin or tallow. A touch with an ordinarily dirty hand—I refer to a solderer's hand—will often soil work sufficiently to make the adherence of solder difficult.

The fluxes most generally employed are tallow for lead, resin or Venice turpentine for copper, chloride of zinc for anything except lead, which never requires it. The latter flux has the property (also possessed by borax at a red heat) of dissolving any traces of oxide which may be formed, as well as acting as a protecting layer to the metal.

We may now turn to the consideration of a simple case of soldering, say the joining of two copper wires. The wires are first cleaned either by dipping in a bath of sulphuric and nitric acids—a thing no laboratory should be without—or by any suitable mechanical means. The cleaned wires are then twisted together—there is a regulation way of doing this, but it presents no advantage in laboratory practice—and the joint is sprinkled over with resin, or painted with a solution of resin in alcohol.

The iron, being heated and floated with solder, is held against the joint, the latter being supported on a brick, and the solder is allowed to "sweat" into the joint. Enough solder must be present to penetrate right through the joint. Nothing is gained by rubbing violently with the iron. If the copper is clean it will tin, and if it is dirty it won't, and there the matter ends.

Beginners generally use too small or too cold a bit, and produce a ragged, dirty joint in consequence. If the saving of time be an object, the joint may be twisted together on ordinarily dirty oxidised wires and heated to, say, 200 deg. C. It is then painted with chloride of zinc and soldered with the bit.

There is a difference of opinion as to the relative merits of chloride of zinc and of resin as a flux in soldering copper. Thus the standing German practice is, or was, to employ the former flux in every case for soldering electric light wires, while in England the custom used to be to specify that soldering should be done by resin, and this custom may still prevail; it lingers in Australia at all events.

However, it is agreed on all hands that when chloride of zinc is used it must be carefully washed off. I have known of an electrical engineer insisting on his workmen "licking" joints with their tongues to ensure the total removal of chloride of zinc; it has a horrible taste; and I have occasionally pursued the same plan myself when the soldering of fine wires was in question.

In any case, it is very certain that chloride of zinc left in a joint will ruin it sooner or later by loosening the contact between copper and solder.

Very often it is requisite to solder together two extensive flat surfaces—for instance, in "chucking" certain kinds of brass work. The surfaces to be soldered must be carefully tinned, most conveniently by the help of the blow-pipe and chloride of zinc. After tinning, the surfaces are laid together and heated so as to "sweat" them together; the phrase, though inelegant, is expressive.

96. Soldering Tin Plate.

If the plate be new and clean, a little resin or its solution in alcohol is all that is necessary as a flux. If the tin plate is rusty the rust must be removed and the clean iron, or rather mild steel, surface exposed. The use of chloride of zinc is practically essential in this case. Tin plate is often spotted with rust long before it becomes rusty as a whole, when, of course, it may be regarded as worn out, and such rust spots are most conveniently removed by means of the plumber's shave-hook. The shave-hook is merely a peculiarly shaped hard steel scraping knife on a handle (Fig. 79).

Fig. 79

With tin plate the soldering of long joints is often necessary. The plate must be temporarily held in position either by binding with iron wire, fastening by clamps, or holding by an assistant. The flux is applied and the iron run slowly along the joint. Enough solder is used to completely float the tip of the iron. By arranging the joint so that it slopes downward slightly, and commencing at the upper end, the solder may be caused to flow after the iron, and will leave a joint with the minimum permissible amount of solder in it. By regulating the slope, heat of iron, etc, any desired quantity of solder may be run into the joint.

Sec. 97. Soldering Zinc.

Zinc alloys with soft solder very easily, and by so doing entirely spoils it, making, it "crumbly," dirty, and preventing it running. Consequently, in soldering up zinc great care must be taken to prevent the solder becoming appreciably contaminated by the zinc. To this end the zinc surfaces are cleaned by means of a little hydrochloric acid, which is painted on instead of chloride of zinc. Plenty of solder is melted on to the work, and is drawn along over the joint by a single slow motion of the soldering bit. The iron must be just hot enough to make the solder flow freely, and it must never be rubbed violently on the zinc or allowed to linger in one spot; the result of the latter action will be to melt a hole through the zinc, owing to the tendency of this metal to form an easily fusible alloy with the solder.

The art of soldering zinc is a very useful one in the laboratory. The majority of physicists appear to overlook the advantages of zinc considered as a material for apparatus construction. It is light, fairly strong, cheap, easily fusible, and yet hard and elastic when cold. It may be worked as easily as lead at a temperature of, say, 150 deg. to 200 deg. C, and slightly below the melting-point (423 deg. C.) it is brittle and may & powdered. The property of softening at a moderate temperature is invaluable as a means of flattening zinc plate or shaping it in any way. During the work it may be held by means of an old cloth. Zinc sheet which has been heated between iron plates and flattened by pressure retains its flatness very fairly well after cooling.

Sec. 98. Soldering other Metals.

Iron.

The iron must be filed clean and then brushed with chloride of zinc solution. Some people add a little sat ammoniac to the chloride of zinc, but the improvement thus made is practically inappreciable. If the iron is clean it tins quite easily, and the process of soldering it is perfectly easy and requires no special comment.

Brass.

The same method as described for iron succeeds perfectly. The brass, if not exceedingly dirty, may be cleaned by heating to the temperature at which solder melts (below 200 deg. C.), and painting it over with chloride of zinc, or dipping it in the liquor. If now the brass be heated again in the blow-pipe flame, it will be found to tin perfectly well when rubbed over with solder.

Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse