Industrial Biography - Iron Workers and Tool Makers
by Samuel Smiles
Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse

[20] This work (especially with the plates) is excessively rare. There is a copy of it in perfect condition in the Grenville Library, British Museum.

[21] Dr. Nash, in his History of Worcestershire, has thrown some doubts upon this story; but Mr. Green, in his Historical Antiquities of the city, has made a most able defence of Yarranton's statement (vol.i. 9, in foot-note).



"The triumph of the industrial arts will advance the cause of civilization more rapidly than its warmest advocates could have hoped, and contribute to the permanent prosperity and strength of the country far move than the most splendid victories of successful war."—C. BABBAGE, The Exposition of 1851.

Dud Dudley's invention of smelting iron with coke made of pit-coal was, like many others, born before its time. It was neither appreciated by the iron-masters nor by the workmen. All schemes for smelting ore with any other fuel than charcoal made from wood were regarded with incredulity. As for Dudley's Metallum Martis, as it contained no specification, it revealed no secret; and when its author died, his secret, whatever it might be, died with him. Other improvements were doubtless necessary before the invention could be turned to useful account. Thus, until a more powerful blowing-furnace had been contrived, the production of pit-coal iron must necessarily have been limited. Dudley himself does not seem to have been able to make more on an average than five tons a-week, and seven tons at the outside. Nor was the iron so good as that made by charcoal; for it is admitted to have been especially liable to deterioration by the sulphureous fumes of the coal in the process of manufacture.

Dr. Plot, in his 'History of Staffordshire,' speaks of an experiment made by one Dr. Blewstone, a High German, as "the last effort" made in that county to smelt iron-ore with pit-coal. He is said to have "built his furnace at Wednesbury, so ingeniously contrived (that only the flame of the coal should come to the ore, with several other conveniences), that many were of opinion he would succeed in it. But experience, that great baffler of speculation, showed it would not be; the sulphureous vitriolic steams that issue from the pyrites, which frequently, if not always, accompanies pit-coal, ascending with the flame, and poisoning the ore sufficiently to make it render much worse iron than that made with charcoal, though not perhaps so much worse as the body of the coal itself would possibly do." [1] Dr. Plot does not give the year in which this "last effort" was made; but as we find that one Dr. Frederic de Blewston obtained a patent from Charles II. on the 25th October, 1677, for "a new and effectual way of melting down, forging, extracting, and reducing of iron and all metals and minerals with pit-coal and sea-coal, as well and effectually as ever hath yet been done by charcoal, and with much less charge;" and as Dr. Plot's History, in which he makes mention of the experiment and its failure, was published in 1686, it is obvious that the trial must have been made between those years.

As the demand for iron steadily increased with the increasing population of the country, and as the supply of timber for smelting purposes was diminishing from year to year, England was compelled to rely more and more upon foreign countries for its supply of manufactured iron. The number of English forges rapidly dwindled, and the amount of the home production became insignificant in comparison with what was imported from abroad. Yarranton, writing in 1676, speaks of "the many iron-works laid down in Kent, Sussex, Surrey, and in the north of England, because the iron of Sweadland, Flanders, and Spain, coming in so cheap, it cannot be made to profit here." There were many persons, indeed, who held that it was better we should be supplied with iron from Spain than make it at home, in consequence of the great waste of wood involved by the manufacture; but against this view Yarranton strongly contended, and held, what is as true now as it was then, that the manufacture of iron was the keystone of England's industrial prosperity. He also apprehended great danger to the country from want of iron in event of the contingency of a foreign war. "When the greatest part of the iron-works are asleep," said he, "if there should be occasion for great quantities of guns and bullets, and other sorts of iron commodities, for a present unexpected war, and the Sound happen to be locked up, and so prevent iron coming to us, truly we should then be in a fine case!"

Notwithstanding these apprehended national perils arising from the want of iron, no steps seem to have been taken to supply the deficiency, either by planting woods on a large scale, as recommended by Yarranton, or by other methods; and the produce of English iron continued steadily to decline. In 1720-30 there were found only ten furnaces remaining in blast in the whole Forest of Dean, where the iron-smelters were satisfied with working up merely the cinders left by the Romans. A writer of the time states that we then bought between two and three hundred thousand pounds' worth of foreign iron yearly, and that England was the best customer in Europe for Swedish and Russian iron.[2] By the middle of the eighteenth century the home manufacture had so much fallen off, that the total production of Great Britain is supposed to have amounted to not more than 18,000 tons a year; four-fifths of the iron used in the country being imported from Sweden.[3]

The more that the remaining ironmasters became straitened for want of wood, the more they were compelled to resort to cinders and coke made from coal as a substitute. And it was found that under certain circumstances this fuel answered the purpose almost as well as charcoal of wood. The coke was made by burning the coal in heaps in the open air, and it was usually mixed with coal and peat in the process of smelting the ore. Coal by itself was used by the country smiths for forging whenever they could procure it for their smithy fires; and in the midland counties they had it brought to them, sometimes from great distances, slung in bags across horses' backs,—for the state of the roads was then so execrable as not to admit of its being led for any considerable distance in carts. At length we arrive at a period when coal seems to have come into general use, and when necessity led to its regular employment both in smelting the ore and in manufacturing the metal. And this brings us to the establishment of the Coalbrookdale works, where the smelting of iron by means of coke and coal was first adopted on a large scale as the regular method of manufacture.

Abraham Darby, the first of a succession of iron manufacturers who bore the same name, was the son of a farmer residing at Wrensnest, near Dudley. He served an apprenticeship to a maker of malt-kilns near Birmingham, after which he married and removed to Bristol in 1700, to begin business on his own account. Industry is of all politics and religions: thus Dudley was a Royalist and a Churchman, Yarranton was a Parliamentarian and a Presbyterian, and Abraham Darby was a Quaker. At Bristol he was joined by three partners of the same persuasion, who provided the necessary capital to enable him to set up works at Baptist Mills, near that city, where he carried on the business of malt-mill making, to which he afterwards added brass and iron founding.

At that period cast-iron pots were in very general use, forming the principal cooking utensils of the working class. The art of casting had, however, made such small progress in England that the pots were for the most part imported from abroad. Darby resolved, if possible, to enter upon this lucrative branch of manufacture; and he proceeded to make a number of experiments in pot-making. Like others who had preceded him, he made his first moulds of clay; but they cracked and burst, and one trial failed after another. He then determined to find out the true method of manufacturing the pots, by travelling into the country from whence the best were imported, in order to master the grand secret of the trade. With this object he went over to Holland in the year 1706, and after diligent inquiry he ascertained that the only sure method of casting "Hilton ware," as such castings were then called, was in moulds of fine dry sand. This was the whole secret.

Returning to Bristol, accompanied by some skilled Dutch workmen, Darby began the new manufacture, and succeeded to his satisfaction. The work was at first carried on with great secrecy, lest other makers should copy the art; and the precaution was taken of stopping the keyhole of the workshop-door while the casting was in progress. To secure himself against piracy, he proceeded to take out a patent for the process in the year 1708, and it was granted for the term of fourteen years. The recital of the patent is curious, as showing the backward state of English iron-founding at that time. It sets forth that "whereas our trusty and well-beloved Abraham Darby, of our city of Bristol, smith, hath by his petition humbly represented to us, that by his study, industry, and expense, he hath found out and brought to perfection a new way of casting iron bellied pots and other iron bellied ware in sand only, without loam or clay, by which such iron pots and other ware may be cast fine and with more ease and expedition, and may be afforded cheaper than they can be by the way commonly used; and in regard to their cheapness may be of great advantage to the poor of this our kingdom, who for the most part use such ware, and in all probability will prevent the merchants of England going to foreign markets for such ware, from whence great quantities are imported, and likewise may in time supply other markets with that manufacture of our dominions, &c..... grants the said Abraham Darby the full power and sole privilege to make and sell such pots and ware for and during the term of fourteen years thence ensuing."

Darby proceeded to make arrangements for carrying on the manufacture upon a large scale at the Baptist Mills; but the other partners hesitated to embark more capital in the concern, and at length refused their concurrence. Determined not to be baulked in his enterprise, Darby abandoned the Bristol firm; and in the year 1709 he removed to Coalbrookdale in Shropshire, with the intention of prosecuting the enterprise on his own account. He took the lease of a little furnace which had existed at the place for more than a century, as the records exist of a "smethe" or "smeth-house" at Coalbrookdale in the time of the Tudors. The woods of oak and hazel which at that time filled the beautiful dingles of the dale, and spread in almost a continuous forest to the base of the Wrekin, furnished abundant fuel for the smithery. As the trade of the Coalbrookdale firm extended, these woods became cleared, until the same scarcity of fuel began to be experienced that had already desolated the forests of Sussex, and brought the manufacture of iron in that quarter to a stand-still.

It appears from the 'Blast Furnace Memorandum Book' of Abraham Darby, which we have examined, that the make of iron at the Coalbrookdale foundry, in 1713, varied from five to ten tons a week. The principal articles cast were pots, kettles, and other "hollow ware," direct from the smelting-furnace; the rest of the metal was run into pigs. In course of time we find that other castings were turned out: a few grates, smoothing-irons, door-frames, weights, baking-plates, cart-bushes, iron pestles and mortars, and occasionally a tailor's goose. The trade gradually increased, until we find as many as 150 pots and kettles cast in a week.

The fuel used in the furnaces appears, from the Darby Memorandum-Book, to have been at first entirely charcoal; but the growing scarcity of wood seems to have gradually led to the use of coke, brays or small coke, and peat. An abundance of coals existed in the neighbourhood: by rejecting those of inferior quality, and coking the others with great care, a combustible was obtained better fitted even than charcoal itself for the fusion of that particular kind of ore which is found in the coal-measures. Thus we find Darby's most favourite charge for his furnaces to have been five baskets of coke, two of brays, and one of peat; next followed the ore, and then the limestone. The use of charcoal was gradually given up as the art of smelting with coke and brays improved, most probably aided by the increased power of the furnace-blast, until at length we find it entirely discontinued.

The castings of Coalbrookdale gradually acquired a reputation, and the trade of Abraham Darby continued to increase until the date of his death, which occurred at Madeley Court in 1717. His sons were too young at the time to carry on the business which he had so successfully started, and several portions of the works were sold at a serious sacrifice. But when the sons had grown up to manhood, they too entered upon the business of iron-founding; and Abraham Darby's son and grandson, both of the same name, largely extended the operations of the firm, until Coalbrookdale, or, as it was popularly called, "Bedlam," became the principal seat of one of the most important branches of the iron trade.

There seems to be some doubt as to the precise time when pit-coal was first regularly employed at Coalbrookdale in smelting the ore. Mr. Scrivenor says, "pit-coal was first used by Mr. Abraham Darby, in his furnace at Coalbrookdale, in 1713;" [4] but we can find no confirmation of this statement in the records of the Company. It is probable that Mr. Darby used raw coal, as was done in the Forest of Dean at the same time,[5] in the process of calcining the ore; but it would appear from his own Memoranda that coke only was used in the process of smelting. We infer from other circumstances that pit-coal was not employed for the latter purpose until a considerably later period. The merit of its introduction, and its successful use in iron-smelting, is due to Mr. Richard Ford, who had married a daughter of Abraham Darby, and managed the Coalbrookdale works in 1747. In a paper by the Rev. Mr. Mason, Woodwardian Professor at Cambridge, given in the 'Philosophical Transactions' for that year,[6] the first account of its successful employment is stated as follows:—"Several attempts have been made to run iron-ore with pit-coal: he (Mr. Mason) thinks it has not succeeded anywhere, as we have had no account of its being practised; but Mr. Ford, of Coalbrookdale in Shropshire, from iron-ore and coal, both got in the same dale, makes iron brittle or tough as he pleases, there being cannon thus cast so soft as to bear turning like wrought-iron." Most probably, however, it was not until the time of Richard Reynolds, who succeeded Abraham Darby the second in the management of the works in 1757, that pit-coal came into large and regular use in the blasting-furnaces as well as the fineries of Coalbrookdale.

Richard Reynolds was born at Bristol in 1735. His parents, like the Darbys, belonged to the Society of Friends, and he was educated in that persuasion. Being a spirited, lively youth, the "old Adam" occasionally cropped out in him; and he is even said, when a young man, to have been so much fired by the heroism of the soldier's character that he felt a strong desire to embrace a military career; but this feeling soon died out, and he dropped into the sober and steady rut of the Society. After serving an apprenticeship in his native town, he was sent to Coalbrookdale on a mission of business, where he became acquainted with the Darby family, and shortly after married Hannah, the daughter of Abraham the second. He then entered upon the conduct of the iron and coal works at Ketley and Horsehay, where he resided for six years, removing to Coalbrookdale in 1763, to take charge of the works there, on the death of his father-in-law.

By the exertions and enterprise of the Darbys, the Coalbrookdale Works had become greatly enlarged, giving remunerative employment to a large and increasing population. The firm had extended their operations far beyond the boundaries of the Dale: they had established foundries at London, Bristol, and Liverpool, and agencies at Newcastle and Truro for the disposal of steam-engines and other iron machinery used in the deep mines of those districts. Watt had not yet perfected his steam-engine; but there was a considerable demand for pumping-engines of Newcomen's construction, many of which were made at the Coalbrookdale Works. The increasing demand for iron gave an impetus to coal-mining, which in its turn stimulated inventors in their improvement of the power of the steam-engine; for the coal could not be worked quickly and advantageously unless the pits could be kept clear of water. Thus one invention stimulates another; and when the steam-engine had been perfected by Watt, and enabled powerful-blowing apparatus to be worked by its agency, we shall find that the production of iron by means of pit-coal being rendered cheap and expeditious, soon became enormously increased.

We are informed that it was while Richard Reynolds had charge of the Coalbrookdale works that a further important improvement was effected in the manufacture of iron by pit-coal. Up to this time the conversion of crude or cast iron into malleable or bar iron had been effected entirely by means of charcoal. The process was carried on in a fire called a finery, somewhat like that of a smith's forge; the iron being exposed to the blast of powerful bellows, and in constant contact with the fuel. In the first process of fusing the ironstone, coal had been used for some time with increasing success; but the question arose, whether coal might not also be used with effect in the second or refining stage. Two of the foremen, named Cranege, suggested to Mr. Reynolds that this might be performed in what is called a reverberatory furnace,[7] in which the iron should not mix with the coal, but be heated solely by the flame. Mr. Reynolds greatly doubted the feasibility of the operation, but he authorized the Cranege, to make an experiment of their process, the result of which will be found described in the following extract of a letter from Mr. Reynolds to Mr. Thomas Goldney of Bristol, dated "Coalbrookdale, 25th April, 1766":—

.... "I come now to what I think a matter of very great consequence. It is some time since Thos. Cranege, who works at Bridgenorth Forge, and his brother George, of the Dale, spoke to me about a notion they had conceived of making bar iron without wood charcoal. I told them, consistent with the notion I had adopted in common with all others I had conversed with, that I thought it impossible, because the vegetable salts in the charcoal being an alkali acted as an absorbent to the sulphur of the iron, which occasions the red-short quality of the iron, and pit coal abounding with sulphur would increase it. This specious answer, which would probably have appeared conclusive to most, and which indeed was what I really thought, was not so to them. They replied that from the observations they had made, and repeated conversations together, they were both firmly of opinion that the alteration from the quality of pig iron into that of bar iron was effected merely by heat, and if I would give them leave, they would make a trial some day. I consented, but, I confess, without any great expectation of their success; and so the matter rested some weeks, when it happening that some repairs had to be done at Bridgenorth, Thomas came up to the Dale, and, with his brother, made a trial in Thos. Tilly's air-furnace with such success as I thought would justify the erection of a small air-furnace at the Forge for the more perfectly ascertaining the merit of the invention. This was accordingly done, and a trial of it has been made this week, and the success has surpassed the most sanguine expectations. The iron put into the furnace was old Bushes, which thou knowest are always made of hard iron, and the iron drawn out is the toughest I ever saw. A bar 1 1/4 inch square, when broke, appears to have very little cold short in it. I look upon it as one of the most important discoveries ever made, and take the liberty of recommending thee and earnestly requesting thou wouldst take out a patent for it immediately.... The specification of the invention will be comprised in a few words, as it will only set forth that a reverberatory furnace being built of a proper construction, the pig or cast iron is put into it, and without the addition of anything else than common raw pit coal, is converted into good malleable iron, and, being taken red-hot from the reverberatory furnace to the forge hammer, is drawn out into bars of various shapes and sizes, according to the will of the workmen."

Mr. Reynolds's advice was implicitly followed. A patent was secured in the name of the brothers Cranege, dated the 17th June, 1766; and the identical words in the above letter were adopted in the specification as descriptive of the process. By this method of puddling, as it is termed, the manufacturer was thenceforward enabled to produce iron in increased quantity at a large reduction in price; and though the invention of the Craneges was greatly improved upon by Onions, and subsequently by Cort, there can be no doubt as to the originality and the importance of their invention. Mr. Tylor states that he was informed by the son of Richard Reynolds that the wrought iron made at Coalbrookdale by the Cranege process "was very good, quite tough, and broke with a long, bright, fibrous fracture: that made by Cort afterwards was quite different." [8] Though Mr. Reynolds's generosity to the Craneges is apparent; in the course which he adopted in securing for them a patent for the invention in their own names, it does not appear to have proved of much advantage to them; and they failed to rise above the rank which they occupied when their valuable discovery was patented. This, however, was no fault of Richard Reynolds, but was mainly attributable to the circumstance of other inventions in a great measure superseding their process, and depriving them of the benefits of their ingenuity.

Among the important improvements introduced by Mr. Reynolds while managing the Coalbrookdale Works, was the adoption by him for the first time of iron instead of wooden rails in the tram-roads along which coal and iron were conveyed from one part of the works to another, as well as to the loading-places along the river Severn. He observed that the wooden rails soon became decayed, besides being liable to be broken by the heavy loads passing over them, occasioning much loss of time, interruption to business, and heavy expenses in repairs. It occurred to him that these inconveniences would be obviated by the use of rails of cast-iron; and, having tried an experiment with them, it answered so well, that in 1767 the whole of the wooden rails were taken up and replaced by rails of iron. Thus was the era of iron railroads fairly initiated at Coalbrookdale, and the example of Mr. Reynolds was shortly after followed on all the tramroads throughout the Country.

It is also worthy of note that the first iron bridge ever erected was cast and made at the Coalbrookdale Works—its projection as well as its erection being mainly due to the skill and enterprise of Abraham Darby the third. When but a young man, he showed indications of that sagacity and energy in business which seemed to be hereditary in his family. One of the first things he did on arriving at man's estate was to set on foot a scheme for throwing a bridge across the Severn at Coalbrookdale, at a point where the banks were steep and slippery, to accommodate the large population which had sprung up along both banks of the river. There were now thriving iron, brick, and pottery works established in the parishes of Madeley and Broseley; and the old ferry on the Severn was found altogether inadequate for ready communication between one bank and the other. The want of a bridge had long been felt, and a plan of one had been prepared during the life time of Abraham Darby the second; but the project was suspended at his death. When his son came of age, he resolved to take up his father's dropped scheme, and prosecute it to completion, which he did. Young Mr. Darby became lord of the manor of Madeley in 1776, and was the owner of one-half of the ferry in right of his lordship. He was so fortunate as to find the owner of the other or Broseley half of the ferry equally anxious with himself to connect the two banks of the river by means of a bridge. The necessary powers were accordingly obtained from Parliament, and a bridge was authorized to be built "of cast-iron, stone, brick, or timber." A company was formed for the purpose of carrying out the project, and the shares were taken by the adjoining owners, Abraham Darby being the principal subscriber.[9]

The construction of a bridge of iron was an entirely new idea. An attempt had indeed been made at Lyons, in France, to construct such a bridge more than twenty years before; but it had entirely failed, and a bridge of timber was erected instead. It is not known whether the Coalbrookdale masters had heard of that attempt; but, even if they had, it could have been of no practical use to them.

Mr. Pritchard, an architect of Shrewsbury, was first employed to prepare a design of the intended structure, which is still preserved. Although Mr. Pritchard proposed to introduce cast-iron in the arch of the bridge, which was to be of 120 feet span, it was only as a sort of key, occupying but a few feet at the crown of the arch. This sparing use of cast iron indicates the timidity of the architect in dealing with the new material—his plan exhibiting a desire to effect a compromise between the tried and the untried in bridge-construction. But the use of iron to so limited an extent, and in such a part of the structure, was of more than questionable utility; and if Mr. Pritchard's plan had been adopted, the problem of the iron bridge would still have remained unsolved.

The plan, however, after having been duly considered, was eventually set aside, and another, with the entire arch of cast-iron, was prepared under the superintendence of Abraham Darby, by Mr. Thomas Gregory, his foreman of pattern-makers. This plan was adopted, and arrangements were forthwith made for carrying it into effect. The abutments of the bridge were built in 1777-8, during which the castings were made at the foundry, and the ironwork was successfully erected in the course of three months. The bridge was opened for traffic in 1779, and proved a most serviceable structure. In 1788 the Society of Arts recognised Mr. Darby's merit as its designer and erector by presenting him with their gold medal; and the model of the bridge is still to be seen in the collection of the Society. Mr. Robert Stephenson has said of the structure: "If we consider that the manipulation of cast-iron was then completely in its infancy, a bridge of such dimensions was doubtless a bold as well as an original undertaking, and the efficiency of the details is worthy of the boldness of the conception." [10] Mr. Stephenson adds that from a defect in the construction the abutments were thrust inwards at the approaches and the ribs partially fractured. We are, however, informed that this is a mistake, though it does appear that the apprehension at one time existed that such an accident might possibly occur.

To remedy the supposed defect, two small land arches were, in the year 1800, substituted for the stone approach on the Broseley side of the bridge. While the work was in progress, Mr. Telford, the well-known engineer, carefully examined the bridge, and thus spoke of its condition at the time:—"The great improvement of erecting upon a navigable river a bridge of cast-iron of one arch only was first put in practice near Coalbrookdale. The bridge was executed in 1777 by Mr. Abraham Darby, and the ironwork is now quite as perfect as when it was first put up. Drawings of this bridge have long been before the public, and have been much and justly admired." [11] A Coalbrookdale correspondent, writing in May, 1862, informs us that "at the present time the bridge is undergoing repair; and, special examination having been made, there is no appearance either that the abutments have moved, or that the ribs have been broken in the centre or are out of their proper right line. There has, it is true, been a strain on the land arches, and on the roadway plates, which, however, the main arch has been able effectually to resist."

The bridge has now been in profitable daily use for upwards of eighty years, and has during that time proved of the greatest convenience to the population of the district. So judicious was the selection of its site, and so great its utility, that a thriving town of the name of Ironbridge has grown up around it upon what, at the time of its erection, was a nameless part of "the waste of the manor of Madeley." And it is probable that the bridge will last for centuries to come. Thus, also, was the use of iron as an important material in bridge-building fairly initiated at Coalbrookdale by Abraham Darby, as the use of iron rails was by Richard Reynolds. We need scarcely add that since the invention and extensive adoption of railway locomotion, the employment of iron in various forms in railway and bridge structures has rapidly increased, until iron has come to be regarded as the very sheet-anchor of the railway engineer.

In the mean time the works at Coalbrookdale had become largely extended. In 1784, when the government of the day proposed to levy a tax on pit-coal, Richard Reynolds strongly urged upon Mr. Pitt, then Chancellor of the Exchequer, as well as on Lord Gower, afterwards Marquis of Stafford, the impolicy of such a tax. To the latter he represented that large capitals had been invested in the iron trade, which was with difficulty carried on in the face of the competition with Swedish and Russian iron. At Coalbrookdale, sixteen "fire engines," as steam engines were first called, were then at work, eight blast-furnaces and nine forges, besides the air furnaces and mills at the foundry, which, with the levels, roads, and more than twenty miles of iron railways, gave employment to a very large number of people. "The advancement of the iron trade within these few years," said he, "has been prodigious. It was thought, and justly, that the making of pig-iron with pit coal was a great acquisition to the country by saving the wood and supplying a material to manufactures, the production of which, by the consumption of all the wood the country produced, was formerly unequal to the demand, and the nail trade, perhaps the most considerable of any one article of manufactured iron, would have been lost to this country had it not been found practicable to make nails of iron made with pit coal. We have now another process to attempt, and that is to make BAR IRON with pit coal; and it is for that purpose we have made, or rather are making, alterations at Donnington Wood, Ketley, and elsewhere, which we expect to complete in the present year, but not at a less expense than twenty thousand pounds, which will be lost to us, and gained by nobody, if this tax is laid upon our coals." He would not, however, have it understood that he sought for any PROTECTION for the homemade iron, notwithstanding the lower prices of the foreign article. "From its most imperfect state as pig-iron," he observed to Lord Sheffield, "to its highest finish in the regulating springs of a watch, we have nothing to fear if the importation into each country should be permitted without duty." We need scarcely add that the subsequent history of the iron trade abundantly justified these sagacious anticipations of Richard Reynolds.

He was now far advanced in years. His business had prospered, his means were ample, and he sought retirement. He did not desire to possess great wealth, which in his opinion entailed such serious responsibilities upon its possessor; and he held that the accumulation of large property was more to be deprecated than desired. He therefore determined to give up his shares in the ironworks at Ketley to his sons William and Joseph, who continued to carry them on. William was a man of eminent ability, well versed in science, and an excellent mechanic. He introduced great improvements in the working of the coal and iron mines, employing new machinery for the purpose, and availing himself with much ingenuity of the discoveries then being made in the science of chemistry. He was also an inventor, having been the first to employ (in 1788) inclined planes, consisting of parallel railways, to connect and work canals of different levels,—an invention erroneously attributed to Fulton, but which the latter himself acknowledged to belong to William Reynolds. In the first chapter of his 'Treatise on Canal Navigation,' published in 1796, Fulton says:—"As local prejudices opposed the Duke of Bridgewater's canal in the first instance, prejudices equally strong as firmly adhered to the principle on which it was constructed; and it was thought impossible to lead one through a country, or to work it to any advantage, unless by locks and boats of at least twenty-five tons, till the genius of Mr. William Reynolds, of Ketley, in Shropshire, stepped from the accustomed path, constructed the first inclined plane, and introduced boats of five tons. This, like the Duke's canal, was deemed a visionary project, and particularly by his Grace, who was partial to locks; yet this is also introduced into practice, and will in many instances supersede lock canals." Telford, the engineer, also gracefully acknowledged the valuable assistance he received from William Reynolds in planning the iron aqueduct by means of which the Ellesmere Canal was carried over the Pont Cysylltau, and in executing the necessary castings for the purpose at the Ketley foundry.

The future management of his extensive ironworks being thus placed in able hands, Richard Reynolds finally left Coalbrookdale in 1804, for Bristol, his native town, where he spent the remainder of his life in works of charity and mercy. Here we might leave the subject, but cannot refrain from adding a few concluding words as to the moral characteristics of this truly good man. Though habitually religious, he was neither demure nor morose, but cheerful, gay, and humorous. He took great interest in the pleasures of the young people about him, and exerted himself in all ways to promote their happiness. He was fond of books, pictures, poetry, and music, though the indulgence of artistic tastes is not thought becoming in the Society to which he belonged. His love for the beauties of nature amounted almost to a passion, and when living at The Bank, near Ketley, it was his great delight in the summer evenings to retire with his pipe to a rural seat commanding a full view of the Wrekin, the Ercall Woods, with Cader Idris and the Montgomeryshire hills in the distance, and watch the sun go down in the west in his glory. Once in every year he assembled a large party to spend a day with him on the Wrekin, and amongst those invited were the principal clerks in the company's employment, together with their families. At Madeley, near Coalbrookdale, where he bought a property, he laid out, for the express use of the workmen, extensive walks through the woods on Lincoln Hill, commanding beautiful views. They were called "The Workmen's Walks," and were a source of great enjoyment to them and their families, especially on Sunday afternoons.

When Mr. Reynolds went to London on business, he was accustomed to make a round of visits, on his way home, to places remarkable for their picturesque beauty, such as Stowe, Hagley Park, and the Leasowes. After a visit to the latter place in 1767, he thus, in a letter to his friend John Maccappen, vindicated his love for the beautiful in nature:—"I think it not only lawful but expedient to cultivate a disposition to be pleased with the beauties of nature, by frequent indulgences for that purpose. The mind, by being continually applied to the consideration of ways and means to gain money, contracts an indifferency if not an insensibility to the profusion of beauties which the benevolent Creator has impressed upon every part of the material creation. A sordid love of gold, the possession of what gold can purchase, and the reputation of being rich, have so depraved the finer feelings of some men, that they pass through the most delightful grove, filled with the melody of nature, or listen to the murmurings of the brook in the valley, with as little pleasure and with no more of the vernal delight which Milton describes, than they feel in passing through some obscure alley in a town."

When in the prime of life, Mr. Reynolds was an excellent rider, performing all his journeys on horseback. He used to give a ludicrous account of a race he once ran with another youth, each having a lady seated on a pillion behind him; Mr. Reynolds reached the goal first, but when he looked round he found that he had lost his fair companion, who had fallen off in the race! On another occasion he had a hard run with Lord Thurlow during a visit paid by the latter to the Ketley Iron-Works. Lord Thurlow pulled up his horse first, and observed, laughing, "I think, Mr. Reynolds, this is probably the first time that ever a Lord Chancellor rode a race with a Quaker!" But a stranger rencontre was one which befel Mr. Reynolds on Blackheath. Though he declined Government orders for cannon, he seems to have had a secret hankering after the "pomp and circumstance" of military life. At all event's he was present on Blackheath one day when George III. was reviewing some troops. Mr. Reynold's horse, an old trooper, no sooner heard the sound of the trumpet than he started off at full speed, and made directly for the group of officers before whom the troops were defiling. Great was the surprise of the King when he saw the Quaker draw up alongside of him, but still greater, perhaps, was the confusion of the Quaker at finding himself in such company.

During the later years of his life, while living at Bristol, his hand was in every good work; and it was often felt where it was not seen. For he carefully avoided ostentation, and preferred doing his good in secret. He strongly disapproved of making charitable bequests by will, which he observed in many cases to have been the foundation of enormous abuses, but held it to be the duty of each man to do all the possible good that he could during his lifetime. Many were the instances of his princely, though at the time unknown, munificence. Unwilling to be recognised as the giver of large sums, he employed agents to dispense his anonymous benefactions. He thus sent 20,000L. to London to be distributed during the distress of 1795. He had four almoners constantly employed in Bristol, finding out cases of distress, relieving them, and presenting their accounts to him weekly, with details of the cases relieved. He searched the debtors' prisons, and where, as often happened, deserving but unfortunate men were found confined for debt, he paid the claims against them and procured their release. Such a man could not fail to be followed with blessings and gratitude; but these he sought to direct to the Giver of all Good. "My talent," said he to a friend, "is the meanest of all talents—a little sordid dust; but as the man in the parable who had but one talent was held accountable, I also am accountable for the talent that I possess, humble as it is, to the great Lord of all." On one occasion the case of a poor orphan boy was submitted to him, whose parents, both dying young, had left him destitute, on which Mr. Reynolds generously offered to place a sum in the names of trustees for his education and maintenance until he could be apprenticed to a business. The lady who represented the case was so overpowered by the munificence of the act that she burst into tears, and, struggling to express her gratitude, concluded with—"and when the dear child is old enough, I will teach him to thank his benefactor." "Thou must teach him to look higher," interrupted Reynolds: "Do we thank the clouds for rain? When the child grows up, teach him to thank Him who sendeth both the clouds and the rain." Reynolds himself deplored his infirmity of temper, which was by nature hasty; and, as his benevolence was known, and appeals were made to him at all times, seasonable and unseasonable, he sometimes met them with a sharp word, which, however, he had scarcely uttered before he repented of it: and he is known to have followed a poor woman to her home and ask forgiveness for having spoken hastily in answer to her application for help.

This "great good man" died on the 10th of September, 1816, in the 81st year of his age. At his funeral the poor of Bristol were the chief mourners. The children of the benevolent societies which he had munificently supported during his lifetime, and some of which he had founded, followed his body to the grave. The procession was joined by the clergy and ministers of all denominations, and by men of all classes and persuasions. And thus was Richard Reynolds laid to his rest, leaving behind him a name full of good odour, which will long be held in grateful remembrance by the inhabitants of Bristol.

[1] Dr. PLOT, Natural History of Staffordshire, 2nd ed. 1686, p. 128.

[2] JOSHUA GEE, The Trade and Navigation of Great Britain considered, 1731.

[3] When a bill was introduced into Parliament in 1750 with the object of encouraging the importation of iron from our American colonies, the Sheffield tanners petitioned against it, on the ground that, if it passed, English iron would be undersold; many forges would consequently be discontinued; in which case the timber used for fuel would remain uncut, and the tanners would thereby be deprived of bark for the purposes of their trade!

[4] History of the Iron Trade, p. 56.

[5] See Mr. Powle's account of the Iron Works in the Forest of Dean (1677-8), in the Philosophical Transactions, vol. ii. p. 418, where he says, "After they have pounded their ore, their first work is to calcine it, which is done in kilns, much after the fashion of ordinary lime-kilns, These they fill up to the top with coal and ore, stratum super stratum, until it be full; and so setting fire to the bottom, they let it burn till the coal be wasted, and then renew the kilns with fresh ore and coal, in the same manner as before. This is done without fusion of the metal, and serves to consume the more drossy parts of the ore and to make it friable." The writer then describes the process of smelting the ore mixed with cinder in the furnaces, where, he says, the fuel is "always of charcoal." "Several attempts," he adds, "have been made to introduce the use of sea-coal in these works instead of charcoal, the former being to be had at an easier rate than the latter; but hitherto they have proved ineffectual, the workmen finding by experience that a sea-coal fire, how vehement soever, will not penetrate the most fixed parts of the ore, and so leaves much of the metal unmelted"

[6] Phil. Trans. vol. xliv. 305.

[7] Reverberatory, so called because the flame or current of heated gases from the fuel is caused to be reverberated or reflected down upon the substance under operation before passing into the chimney. It is curious that Rovenson, in his Treatise of Metallica of 1613, describes a reverberatory furnace in which iron was to be smelted by pit-coal, though it does not appear that he succeeded in perfecting his invention. Dr. Percy, in his excellent work on Metallurgy, thus describes a reverberatory furnace:—"It consists essentially of three parts—a fireplace at one end, a stack or chimney at the other, and a bed between both on which the matter is heated. The fireplace is separated from the bed by a low partition wall called the fire-bridge, and both are covered by an arched roof which rises from the end wall of the fireplace and gradually dips toward the furthest end of the bed connected with the stack. On one or both sides of the bed, or at the end near the stack, may be openings through which the ore spread over the surface of the bed may be stirred about and exposed to the action of the air. The matter is heated in such a furnace by flame, and is kept from contact with the solid fuel. The flame in its course from the fireplace to the stack is reflected downwards or REVERBERATED on the matter beneath, whence the name REVERBERATORY furnace."

[8] Mr. TYLOR on Metal Work—Reports on the Paris Exhibition of 1855. Part II. 182. We are informed by Mr. Reynolds of Coed-du, a grandson of Richard Reynolds, that "on further trials many difficulties arose. The bottoms of the furnaces were destroyed by the heat, and the quality of the iron varied. Still, by a letter dated May, 1767, it appears there had been sold of iron made in the new way to the value of 247L. 14s. 6d."

[9] Among the other subscribers were the Rev. Mr. Harris, Mr. Jennings, and Mr. John Wilkinson, an active promoter of the scheme, who gave the company the benefit of his skill and experience when it was determined to construct the bridge of iron. For an account of John Wilkinson see Lives of the Engineers, vol. ii. 337, 356. In the description of the first iron bridge given in that work we have, it appears, attributed rather more credit to Mr. Wilkinson than he is entitled to. Mr. Darby was the most active promoter of the scheme, and had the principal share in the design. Wilkinson nevertheless was a man of great energy and originality. Besides being the builder of the first iron ship, he was the first to invent, for James Watt, a machine that would bore a tolerably true cylinder. He afterwards established iron works in France, and Arthur Young says, that "until that well-known English manufacturer arrived, the French knew nothing of the art of casting cannon solid and then boring them" (Travels in France, 4to. ed. London, 1792, p.90). Yet England had borrowed her first cannon-maker from France in the person of Peter Baude, as described in chap. iii. Wilkinson is also said to have invented a kind of hot-blast, in respect of which various witnesses gave evidence on the trial of Neilson's patent in 1839; but the invention does not appear to have been perfected by him.

[10] Encyclopaedia Britannica, 8th ed. Art.

[11] PLYMLEY, General View of the Agriculture of Shropshire. "Iron Bridges."



"It may be averred that as certainly as the age of iron superseded that of bronze, so will the age of steel reign triumphant over iron."—HENRY BESSEMER.

"Aujourd'hui la revolution que devait amener en Grande-Bretagne la memorable decouverte de Benjamin Huntsman est tout a fait accomplie, et chaque jour les consequetces sen feront plus vivement sentir sur le confinent."—LE PLAY, Sur la Fabrication de l' Acier en Yorkshire.

Iron, besides being used in various forms as bar and cast iron, is also used in various forms as bar and cast steel; and it is principally because of its many admirable qualities in these latter forms that iron maintains its supremacy over all the other metals.

The process of converting iron into steel had long been known among the Eastern nations before it was introduced into Europe. The Hindoos were especially skilled in the art of making steel, as indeed they are to this day; and it is supposed that the tools with which the Egyptians covered their obelisks and temples of porphyry and syenite with hieroglyphics were made of Indian steel, as probably no other metal was capable of executing such work. The art seems to have been well known in Germany in the Middle Ages, and the process is on the whole very faithfully described by Agricola in his great work on Metallurgy.[1] England then produced very little steel, and was mainly dependent for its supply of the article upon the continental makers.

From an early period Sheffield became distinguished for its manufacture of iron and steel into various useful articles. We find it mentioned in the thirteenth century as a place where the best arrowheads were made,—the Earl of Richmond owing his success at the battle of Bosworth partly to their superior length, sharpness, and finish. The manufactures of the town became of a more pacific character in the following centuries, during which knives, tools, and implements of husbandry became the leading articles.

Chaucer's reference to the 'Sheffield thwytel' (or case-knife) in his Canterbury Tales, written about the end of the fourteenth century, shows that the place had then become known for its manufacture of knives. In 1575 we find the Earl of Shrewsbury presenting to his friend Lord Burleigh "a case of Hallamshire whittells, being such fruites as his pore cuntrey affordeth with fame throughout the realme." Fuller afterwards speaks of the Sheffield knives as "for common use of the country people," and he cites an instance of a knave who cozened him out of fourpence for one when it was only worth a penny.

In 1600 Sheffield became celebrated for its tobacco-boxes and Jew's-harps. The town was as yet of small size and population; for when a survey of it was made in 1615 it was found to contain not more than 2207 householders, of whom one-third, or 725, were "not able to live without the charity of their neighbours: these are all Begging poor." [2] It must, however, have continued its manufacture of knives; for we find that the knife with which Felton stabbed the Duke of Buckingham at Portsmouth in 1628 was traced to Sheffield. The knife was left sticking in the duke's body, and when examined was found to bear the Sheffield corporation mark. It was ultimately ascertained to have been made by one Wild, a cutler, who had sold the knife for tenpence to Felton when recruiting in the town. At a still later period, the manufacture of clasp or spring knives was introduced into Sheffield by Flemish workmen. Harrison says this trade was begun in 1650. The clasp-knife was commonly known in the North as a jocteleg. Hence Burns, describing the famous article treasured by Captain Grose the antiquarian, says that—

"It was a faulding jocteleq, Or lang-kail gully;"

the word being merely a corruption of Jacques de Liege, a famous foreign cutler, whose knives were as well known throughout Europe as those of Rogers or Mappin are now. Scythes and sickles formed other branches of manufacture introduced by the Flemish artisans, the makers of the former principally living in the parish of Norton, those of the latter in Eckington.

Many improvements were introduced from time to time in the material of which these articles were made. Instead of importing the German steel, as it was called, the Sheffield manufacturers began to make it themselves, principally from Dannemora iron imported from Sweden. The first English manufacturer of the article was one Crowley, a Newcastle man; and the Sheffield makers shortly followed his example. We may here briefly state that the ordinary method of preparing this valuable material of manufactures is by exposing iron bars, placed in contact with roughly-granulated charcoal, to an intense heat,—the process lasting for about a week, more or less, according to the degree of carbonization required. By this means, what is called BLISTERED STEEL is produced, and it furnishes the material out of which razors, files, knives, swords, and various articles of hardware are manufactured. A further process is the manufacture of the metal thus treated into SHEAR STEEL, by exposing a fasciculus of the blistered steel rods, with sand scattered over them for the purposes of a flux, to the heat of a wind-furnace until the whole mass becomes of a welding heat, when it is taken from the fire and drawn out under a forge-hammer,—the process of welding being repeated, after which the steel is reduced to the required sizes. The article called FAGGOT steel is made after a somewhat similar process.

But the most valuable form in which steel is now used in the manufactures of Sheffield is that of cast-steel, in which iron is presented in perhaps its very highest state of perfection. Cast-steel consists of iron united to carbon in an elastic state together with a small portion of oxygen; whereas crude or pig iron consists of iron combined with carbon in a material state.[3] Chief merits of cast-steel consist in its possessing great cohesion and closeness of grain, with an astonishing degree of tenacity and flexibility,—qualities which render it of the highest value in all kinds of tools and instruments where durability, polish, and fineness of edge are essential requisites. It is to this material that we are mainly indebted for the exquisite cutting instrument of the surgeon, the chisel of the sculptor, the steel plate on which the engraver practises his art, the cutting tools employed in the various processes of skilled handicraft, down to the common saw or the axe used by the backwoodsman in levelling the primeval forest.

The invention of cast-steel is due to Benjamin Huntsman, of Attercliffe, near Sheffield. M. Le Play, Professor of Metallurgy in the Royal School of Mines of France, after making careful inquiry and weighing all the evidence on the subject, arrived at the conclusion that the invention fairly belongs to Huntsman. The French professor speaks of it as a "memorable discovery," made and applied with admirable perseverance; and he claims for its inventor the distinguished merit of advancing the steel manufactures of Yorkshire to the first rank, and powerfully contributing to the establishment on a firm foundation of the industrial and commercial supremacy of Great Britain. It is remarkable that a French writer should have been among the first to direct public attention to the merits of this inventor, and to have first published the few facts known as to his history in a French Government Report,—showing the neglect which men of this class have heretofore received at home, and the much greater esteem in which they are held by scientific foreigners.[4] Le Play, in his enthusiastic admiration of the discoverer of so potent a metal as cast-steel, paid a visit to Huntsman's grave in Atterclifle Churchyard, near Sheffield, and from the inscription on his tombstone recites the facts of his birth, his death, and his brief history. With the assistance of his descendants, we are now enabled to add the following record of the life and labours of this remarkable but almost forgotten man.

Benjamin Huntsman was born in Lincolnshire in the year 1704. His parents were of German extraction, and had settled in this country only a few years previous to his birth. The boy being of an ingenious turn, was bred to a mechanical calling; and becoming celebrated for his expertness in repairing clocks, he eventually set up in business as a clock maker and mender in the town of Doncaster. He also undertook various other kinds of metal work, such as the making and repairing of locks, smoke-jacks, roasting-jacks, and other articles requiring mechanical skill. He was remarkably shrewd, observant, thoughtful, and practical; so much so that he came to be regarded as the "wise man" of his neighbourhood, and was not only consulted as to the repairs of machinery, but also of the human frame. He practised surgery with dexterity, though after an empirical fashion, and was held in especial esteem as an oculist. His success was such that his advice was sought in many surgical diseases, and he was always ready to give it, but declined receiving any payment in return.

In the exercise of his mechanical calling, he introduced several improved tools, but was much hindered by the inferior quality of the metal supplied to him, which was common German steel. He also experienced considerable difficulty in finding a material suitable for the springs and pendulums of his clocks. These circumstances induced him to turn his attention to the making of a better kind of steel than was then procurable, for the purposes of his trade. His first experiments were conducted at Doncaster;[5] but as fuel was difficult to be had at that place, he determined, for greater convenience, to remove to the neighbourhood of Sheffield, which he did in 1740. He first settled at Handsworth, a few miles to the south of that town, and there pursued his investigations in secret. Unfortunately, no records have been preserved of the methods which he adopted in overcoming the difficulties he had necessarily to encounter. That they must have been great is certain, for the process of manufacturing cast-steel of a first-rate quality even at this day is of a most elaborate and delicate character, requiring to be carefully watched in its various stages. He had not only to discover the fuel and flux suitable for his purpose, but to build such a furnace and make such a crucible as should sustain a heat more intense than any then known in metallurgy. Ingot-moulds had not yet been cast, nor were there hoops and wedges made that would hold them together, nor, in short, were any of those materials at his disposal which are now so familiar at every melting-furnace.

Huntsman's experiments extended over many years before the desired result was achieved. Long after his death, the memorials of the numerous failures through which he toilsomely worked his way to success, were brought to light in the shape of many hundredweights of steel, found buried in the earth in different places about his manufactory. From the number of these wrecks of early experiments, it is clear that he had worked continuously upon his grand idea of purifying the raw steel then in use, by melting it with fluxes at an intense heat in closed earthen crucibles. The buried masses were found in various stages of failure, arising from imperfect melting, breaking of crucibles, and bad fluxes; and had been hid away as so much spoiled steel of which nothing could be made. At last his perseverance was rewarded, and his invention perfected; and though a hundred years have passed since Huntsman's discovery, the description of fuel (coke) which he first applied for the purpose of melting the steel, and the crucibles and furnaces which he used, are for the most part similar to those in use at the present day. Although the making of cast-steel is conducted with greater economy and dexterity, owing to increased experience, it is questionable whether any maker has since been able to surpass the quality of Huntsman's manufacture.

The process of making cast-steel, as invented by Benjamin Huntsman, may be thus summarily described. The melting is conducted in clay pots or crucibles manufactured for the purpose, capable of holding about 34 lbs. each. Ten or twelve of such crucibles are placed in a melting-furnace similar to that used by brass founders; and when the furnace and pots are at a white heat, to which they are raised by a coke fire, they are charged with bar steel reduced to a certain degree of hardness, and broken into pieces of about a pound each. When the pots are all thus charged with steel, lids are placed over them, the furnace is filled with coke, and the cover put down. Under the intense heat to which the metal is exposed, it undergoes an apparent ebullition. When the furnace requires feeding, the workmen take the opportunity of lifting the lid of each crucible and judging how far the process has advanced. After about three hours' exposure to the heat, the metal is ready for "teeming." The completion of the melting process is known by the subsidence of all ebullition, and by the clear surface of the melted metal, which is of a dazzling brilliancy like the sun when looked at with the naked eye on a clear day. The pots are then lifted out of their place, and the liquid steel is poured into ingots of the shape and size required. The pots are replaced, filled again, and the process is repeated; the red-hot pots thus serving for three successive charges, after which they are rejected as useless.

When Huntsman had perfected his invention, it would naturally occur to him that the new metal might be employed for other purposes besides clock-springs and pendulums. The business of clock-making was then of a very limited character, and it could scarcely have been worth his while to pursue so extensive and costly a series of experiments merely to supply the requirements of that trade. It is more probable that at an early stage of his investigations he shrewdly foresaw the extensive uses to which cast-steel might be applied in the manufacture of tools and cutlery of a superior kind; and we accordingly find him early endeavouring to persuade the manufacturers of Sheffield to employ it in the manufacture of knives and razors. But the cutlers obstinately refused to work a material so much harder than that which they had been accustomed to use; and for a time he gave up all hopes of creating a demand in that quarter. Foiled in his endeavours to sell his steel at home, Huntsman turned his attention to foreign markets; and he soon found he could readily sell abroad all that he could make. The merit of employing cast-steel for general purposes belongs to the French, always so quick to appreciate the advantages of any new discovery, and for a time the whole of the cast-steel that Huntsman could manufacture was exported to France. When he had fairly established his business with that country, the Sheffield cutlers became alarmed at the reputation which cast-steel was acquiring abroad; and when they heard of the preference displayed by English as well as French consumers for the cutlery manufactured of that metal, they readily apprehended the serious consequences that must necessarily result to their own trade if cast-steel came into general use. They then appointed a deputation to wait upon Sir George Savile, one of the members for the county of York, and requested him to use his influence with the government to obtain an order to prohibit the exportation of cast-steel. But on learning from the deputation that the Sheffield manufacturers themselves would not make use of the new steel, he positively declined to comply with their request. It was indeed fortunate for the interests of the town that the object of the deputation was defeated, for at that time Mr. Huntsman had very pressing and favourable offers from some spirited manufacturers in Birmingham to remove his furnaces to that place; and it is extremely probable that had the business of cast-steel making become established there, one of the most important and lucrative branches of its trade would have been lost to the town of Sheffield.

The Sheffield makers were therefore under the necessity of using the cast-steel, if they would retain their trade in cutlery against France; and Huntsman's home trade rapidly increased. And then began the efforts of the Sheffield men to wrest his secret from him. For Huntsman had not taken out any patent for his invention, his only protection being in preserving his process as much a mystery as possible. All the workmen employed by him were pledged to inviolable secrecy; strangers were carefully excluded from the works; and the whole of the steel made was melted during the night. There were many speculations abroad as to Huntsman's process. It was generally believed that his secret consisted in the flux which he employed to make the metal melt more readily; and it leaked out amongst the workmen that he used broken bottles for the purpose. Some of the manufacturers, who by prying and bribing got an inkling of the process, followed Huntsman implicitly in this respect; and they would not allow their own workmen to flux the pots lest they also should obtain possession of the secret. But it turned out eventually that no such flux was necessary, and the practice has long since been discontinued. A Frenchman named Jars, frequently quoted by Le Play in his account of the manufacture of steel in Yorkshire,[6] paid a visit to Sheffield towards the end of last century, and described the process so far as he was permitted to examine it. According to his statement all kinds of fragments of broken steel were used; but this is corrected by Le Play, who states that only the best bar steel manufactured of Dannemora iron was employed. Jars adds that "the steel is put into the crucible with A FLUX, the composition of which is kept secret;" and he states that the time then occupied in the conversion was five hours.

It is said that the person who first succeeded in copying Huntsman's process was an ironfounder named Walker, who carried on his business at Greenside near Sheffield, and it was certainly there that the making of cast-steel was next begun. Walker adopted the "ruse" of disguising himself as a tramp, and, feigning great distress and abject poverty, he appeared shivering at the door of Huntsman's foundry late one night when the workmen were about to begin their labours at steel-casting, and asked for admission to warm himself by the furnace fire. The workmen's hearts were moved, and they permitted him to enter. We have the above facts from the descendants of the Huntsman family; but we add the traditional story preserved in the neighbourhood, as given in a well-known book on metallurgy:—

"One cold winter's night, while the snow was falling in heavy flakes, and the manufactory threw its red glared light over the neighbourhood, a person of the most abject appearance presented himself at the entrance, praying for permission to share the warmth and shelter which it afforded. The humane workmen found the appeal irresistible, and the apparent beggar was permitted to take up his quarters in a warm corner of the building. A careful scrutiny would have discovered little real sleep in the drowsiness which seemed to overtake the stranger; for he eagerly watched every movement of the workmen while they went through the operations of the newly discovered process. He observed, first of all, that bars of blistered steel were broken into small pieces, two or three inches in length, and placed in crucibles of fire clay. When nearly full, a little green glass broken into small fragments was spread over the top, and the whole covered over with a closely-fitting cover. The crucibles were then placed in a furnace previously prepared for them, and after a lapse of from three to four hours, during which the crucibles were examined from time to time to see that the metal was thoroughly melted and incorporated, the workmen proceeded to lift the crucible from its place on the furnace by means of tongs, and its molten contents, blazing, sparkling, and spurting, were poured into a mould of cast-iron previously prepared: here it was suffered to cool, while the crucibles were again filled, and the process repeated. When cool, the mould was unscrewed, and a bar of cast-steel presented itself, which only required the aid of the hammerman to form a finished bar of cast-steel. How the unauthorized spectator of these operations effected his escape without detection tradition does not say; but it tells us that, before many months had passed, the Huntsman manufactory was not the only one where cast-steel was produced." [7]

However the facts may be, the discovery of the elder Huntsman proved of the greatest advantage to Sheffield; for there is scarcely a civilized country where Sheffield steel is not largely used, either in its most highly finished forms of cutlery, or as the raw material for some home manufacture. In the mean time the demand for Huntsman's steel steadily increased, and in 1770, for the purpose of obtaining greater scope for his operations, he removed to a large new manufactory which he erected at Attercliffe, a little to the north of Sheffield, more conveniently situated for business purposes. There he continued to flourish for six years more, making steel and practising benevolence; for, like the Darbys and Reynoldses of Coalbrookdale, he was a worthy and highly respected member of the Society of Friends. He was well versed in the science of his day, and skilled in chemistry, which doubtless proved of great advantage to him in pursuing his experiments in metallurgy.[8] That he was possessed of great perseverance will be obvious from the difficulties he encountered and overcame in perfecting his valuable invention. He was, however, like many persons of strong original character, eccentric in his habits and reserved in his manner. The Royal Society wished to enrol him as a member in acknowledgment of the high merit of his discovery of cast-steel, as well as because of his skill in practical chemistry; but as this would have drawn him in some measure from his seclusion, and was also, as he imagined, opposed to the principles of the Society to which he belonged, he declined the honour. Mr. Huntsman died in 1776, in his seventy-second year, and was buried in the churchyard at Attercliffe, where a gravestone with an inscription marks his resting-place.

His son continued to carry on the business, and largely extended its operations. The Huntsman mark became known throughout the civilised world. Le Play the French Professor of Metallurgy, in his Memoire of 1846, still speaks of the cast-steel bearing the mark of "Huntsman and Marshall" as the best that is made, and he adds, "the buyer of this article, who pays a higher price for it than for other sorts, is not acting merely in the blind spirit of routine, but pays a logical and well-deserved homage to all the material and moral qualities of which the true Huntsman mark has been the guarantee for a century." [9]

Many other large firms now compete for their share of the trade; and the extent to which it has grown, the number of furnaces constantly at work, and the quantity of steel cast into ingots, to be tilted or rolled for the various purposes to which it is applied, have rendered Sheffield the greatest laboratory in the world of this valuable material. Of the total quantity of cast-steel manufactured in England, not less than five-sixths are produced there; and the facilities for experiment and adaptation on the spot have enabled the Sheffield steel-makers to keep the lead in the manufacture, and surpass all others in the perfection to which they have carried this important branch of our national industry. It is indeed a remarkable fact that this very town, which was formerly indebted to Styria for the steel used in its manufactures, now exports a material of its own conversion to the Austrian forges and other places on the Continent from which it was before accustomed to draw its own supplies.

Among the improved processes invented of late years for the manufacture of steel are those of Heath, Mushet, and Bessemer. The last promises to effect before long an entire revolution in the iron and steel trade. By it the crude metal is converted by one simple process, directly as it comes from the blast-furnace. This is effected by driving through it, while still in a molten state, several streams of atmospheric air, on which the carbon of the crude iron unites with the oxygen of the atmosphere, the temperature is greatly raised, and a violent ebullition takes place, during which, if the process be continued, that part of the carbon which appears to be mechanically mixed and diffused through the crude iron is entirely consumed. The metal becomes thoroughly cleansed, the slag is ejected and removed, while the sulphur and other volatile matters are driven off; the result being an ingot of malleable iron of the quality of charcoal iron. An important feature in the process is, that by stopping it at a particular stage, immediately following the boil, before the whole of the carbon has been abstracted by the oxygen, the crude iron will be found to have passed into the condition of cast-steel of ordinary quality. By continuing the process, the metal losing its carbon, it passes from hard to soft steel, thence to steely iron, and last of all to very soft iron; so that by interrupting the process at any stage, or continuing it to the end, almost any quality of iron and steel may be obtained. One of the most valuable forms of the metal is described by Mr. Bessemer as "semi-steel," being in hardness about midway between ordinary cast-steel and soft malleable iron. The Bessemer processes are now in full operation in England as well as abroad, both for converting crude into malleable iron, and for producing steel; and the results are expected to prove of the greatest practical utility in all cases where iron and steel are extensively employed.

Yet, like every other invention, this of Mr. Bessemer had long been dreamt of, if not really made. We are informed in Warner's Tour through the Northern. Counties of England, published at Bath in 1801, that a Mr. Reed of Whitehaven had succeeded at that early period in making steel direct from the ore; and Mr. Mushet clearly alludes to the process in his "Papers on Iron and Steel." Nevertheless, Mr. Bessemer is entitled to the merit of working out the idea, and bringing the process to perfection, by his great skill and indomitable perseverance. In the Heath process, carburet of manganese is employed to aid the conversion of iron into steel, while it also confers on the metal the property of welding and working more soundly under the hammer—a fact discovered by Mr. Heath while residing in India. Mr. Mushet's process is of a similar character. Another inventor, Major Uchatius, an Austrian engineer, granulates crude iron while in a molten state by pouring it into water, and then subjecting it to the process of conversion. Some of the manufacturers still affect secrecy in their operations; but as one of the Sanderson firm—famous for the excellence of their steel—remarked to a visitor when showing him over their works, "the great secret is to have the courage to be honest—a spirit to purchase the best material, and the means and disposition to do justice to it in the manufacture."

It remains to be added, that much of the success of the Sheffield manufactures is attributable to the practical skill of the workmen, who have profited by the accumulated experience treasured up by their class through many generations. The results of the innumerable experiments conducted before their eyes have issued in a most valuable though unwritten code of practice, the details of which are known only to themselves. They are also a most laborious class; and Le Play says of them, when alluding to the fact of a single workman superintending the operations of three steel-casting furnaces—"I have found nowhere in Europe, except in England, workmen able for an entire day, without any interval of rest, to undergo such toilsome and exhausting labour as that performed by these Sheffield workmen."

[1] AGRICOLA, De Re Metallica. Basle, 1621.

[2] The Rev. JOSEPH HUNTER, History of Hallamshire.

[3] MUSHET, Papers On Iron and Steel.

[4] M. Le Play's two elaborate and admirable reports on the manufacture of steel, published in the Annales des Mines, vols. iii. and ix., 4th series, are unique of their kind, and have as yet no counterpart in English literature. They are respectively entitled 'Memoire sur la Fabrication de l'Acier en Yorkshire,' and 'Memoire sur le Fabrication et le Commerce des Fers a Acier dans le Nord de l'Europe.'

[5] There are several clocks still in existence in the neighbourhood of Doncaster made by Benjamin Huntsman; and there is one in the possession of his grandson, with a pendulum made of cast-steel. The manufacture of a pendulum of such a material at that early date is certainly curious; its still perfect spring and elasticity showing the scrupulous care with which it had been made.

[6] Annales des Mines, vols. iii. and ix., 4th Series.

[7] The Useful Metals and their Alloys (p. 348), an excellent little work, in which the process of cast-steel making will be found fully described.

[8] We are informed that a mirror is still preserved at Attercliffe, made by Huntsman in the days of his early experiments.

[9] Annales des Mines, vol. ix., 4th Series, 266.



"I have always found it in mine own experience an easier matter to devise manie and profitable inventions, than to dispose of one of them to the good of the author himself."—Sir Hugh Platt, 1589.

Henry Cort was born in 1740 at Lancaster, where his father carried on the trade of a builder and brickmaker. Nothing is known as to Henry's early history; but he seems to have raised himself by his own efforts to a respectable position. In 1765 we find him established in Surrey Street, Strand, carrying on the business of a navy agent, in which he is said to have realized considerable profits. It was while conducting this business that he became aware of the inferiority of British iron compared with that obtained from foreign countries. The English wrought iron was considered so bad that it was prohibited from all government supplies, while the cast iron was considered of too brittle a nature to be suited for general use.[1] Indeed the Russian government became so persuaded that the English nation could not carry on their manufactures without Russian iron, that in 1770 they ordered the price to be raised from 70 and 80 copecs per pood to 200 and 220 copecs per pood.[2]

Such being the case, Cort's attention became directed to the subject in connection with the supply of iron to the Navy, and he entered on a series of experiments with the object of improving the manufacture of English iron. What the particular experiments were, and by what steps he arrived at results of so much importance to the British iron trade, no one can now tell. All that is known is, that about the year 1775 he relinquished his business as a navy agent, and took a lease of certain premises at Fontley, near Fareham, at the north-western corner of Portsmouth Harbour, where he erected a forge and an iron mill. He was afterwards joined in partnership by Samuel Jellicoe (son of Adam Jellicoe, then Deputy-Paymaster of Seamen's Wages), which turned out, as will shortly appear, a most unfortunate connection for Cort.

As in the case of other inventions, Cort took up the manufacture of iron at the point to which his predecessors had brought it, carrying it still further, and improving upon their processes. We may here briefly recite the steps by which the manufacture of bar-iron by means of pit-coal had up to this time been advanced. In 1747, Mr. Ford succeeded at Coalbrookdale in smelting iron ore with pit-coal, after which it was refined in the usual way by means of coke and charcoal. In 1762, Dr. Roebuck (hereafter to be referred to) took out a patent for melting the cast or pig iron in a hearth heated with pit-coal by the blast of bellows, and then working the iron until it was reduced to nature, or metallized, as it was termed; after which it was exposed to the action of a hollow pit-coal fire urged by a blast, until it was reduced to a loop and drawn out into bar-iron under a common forge-hammer. Then the brothers Cranege, in 1766, adopted the reverberatory or air furnace, in which they placed the pig or cast iron, and without blast or the addition of anything more than common raw pit-coal, converted the same into good malleable iron, which being taken red hot from the reverberatory furnace to the forge hammer, was drawn into bars according to the will of the workman. Peter Onions of Merthyr Tydvil, in 1783, carried the manufacture a stage further, as described by him in his patent of that year. Having charged his furnace ("bound with iron work and well annealed") with pig or fused cast iron from the smelting furnace, it was closed up and the doors were luted with sand. The fire was urged by a blast admitted underneath, apparently for the purpose of keeping up the combustion of the fuel on the grate. Thus Onions' furnace was of the nature of a puddling furnace, the fire of which was urged by a blast. The fire was to be kept up until the metal became less fluid, and "thickened into a kind of froth, which the workman, by opening the door, must turn and stir with a bar or other iron instrument, and then close the aperture again, applying the blast and fire until there was a ferment in the metal." The patent further describes that "as the workman stirs the metal," the scoriae will separate, "and the particles of iron will adhere, which particles the workman must collect or gather into a mass or lump." This mass or lump was then to be raised to a white heat, and forged into malleable iron at the forge-hammer.

Such was the stage of advance reached in the manufacture of bar-iron, when Henry Cort published his patents in 1783 and 1784. In dispensing with a blast, he had been anticipated by the Craneges, and in the process of puddling by Onions; but he introduced so many improvements of an original character, with which he combined the inventions of his predecessors, as to establish quite a new era in the history of the iron manufacture, and, in the course of a few years, to raise it to the highest state of prosperity. As early as 1786, Lord Sheffield recognised the great national importance of Cort's improvements in the following words:—"If Mr. Cort's very ingenious and meritorious improvements in the art of making and working iron, the steam-engine of Boulton and Watt, and Lord Dundonald's discovery of making coke at half the present price, should all succeed, it is not asserting too much to say that the result will be more advantageous to Great Britain than the possession of the thirteen colonies (of America); for it will give the complete command of the iron trade to this country, with its vast advantages to navigation." It is scarcely necessary here to point out how completely the anticipations of Lord Sheffield have been fulfilled, sanguine though they might appear to be when uttered some seventy-six years ago.[3]

We will endeavour as briefly as possible to point out the important character of Mr. Cort's improvements, as embodied in his two patents of 1783 and 1784. In the first he states that, after "great study, labour, and expense, in trying a variety of experiments, and making many discoveries, he had invented and brought to perfection a peculiar method and process of preparing, welding, and working various sorts of iron, and of reducing the same into uses by machinery: a furnace, and other apparatus, adapted and applied to the said process." He first describes his method of making iron for "large uses," such as shanks, arms, rings, and palms of anchors, by the method of piling and faggoting, since become generally practised, by laying bars of iron of suitable lengths, forged on purpose, and tapering so as to be thinner at one end than the other, laid over one another in the manner of bricks in buildings, so that the ends should everywhere overlay each other. The faggots so prepared, to the amount of half a ton more or less, were then to be put into a common air or balling furnace, and brought to a welding heat, which was accomplished by his method in a much shorter time than in any hollow fire; and when the heat was perfect, the faggots were then brought under a forge-hammer of great size and weight, and welded into a solid mass. Mr. Cort alleges in the specification that iron for "larger uses" thus finished, is in all respect's possessed of the highest degree of perfection; and that the fire in the balling furnace is better suited, from its regularity and penetrating quality, to give the iron a perfect welding heat throughout its whole mass, without fusing in any part, than any fire blown by a blast. Another process employed by Mr. Cort for the purpose of cleansing the iron and producing a metal of purer grain, was that of working the faggots by passing them through rollers. "By this simple process," said he, "all the earthy particles are pressed out and the iron becomes at once free from dross, and what is usually called cinder, and is compressed into a fibrous and tough state." The objection has indeed been taken to the process of passing the iron through rollers, that the cinder is not so effectually got rid of as by passing it under a tilt hammer, and that much of it is squeezed into the bar and remains there, interrupting its fibre and impairing its strength.

It does not appear that there was any novelty in the use of rollers by Cort; for in his first specification he speaks of them as already well known.[4] His great merit consisted in apprehending the value of certain processes, as tested by his own and others' experience, and combining and applying them in a more effective practical form than had ever been done before. This power of apprehending the best methods, and embodying the details in one complete whole, marks the practical, clear-sighted man, and in certain cases amounts almost to a genius. The merit of combining the inventions of others in such forms as that they shall work to advantage, is as great in its way as that of the man who strikes out the inventions themselves, but who, for want of tact and experience, cannot carry them into practical effect.

It was the same with Cort's second patent, in which he described his method of manufacturing bar-iron from the ore or from cast-iron. All the several processes therein described had been practised before his time; his merit chiefly consisting in the skilful manner in which he combined and applied them. Thus, like the Craneges, he employed the reverberatory or air furnace, without blast, and, like Onions, he worked the fused metal with iron bars until it was brought into lumps, when it was removed and forged into malleable iron. Cort, however, carried the process further, and made it more effectual in all respects. His method may be thus briefly described: the bottom of the reverberatory furnace was hollow, so as to contain the fluid metal, introduced into it by ladles; the heat being kept up by pit-coal or other fuel. When the furnace was charged, the doors were closed until the metal was sufficiently fused, when the workman opened an aperture and worked or stirred about the metal with iron bars, when an ebullition took place, during the continuance of which a bluish flame was emitted, the carbon of the cast-iron was burned off, the metal separated from the slag, and the iron, becoming reduced to nature, was then collected into lumps or loops of sizes suited to their intended uses, when they were drawn out of the doors of the furnace. They were then stamped into plates, and piled or worked in an air furnace, heated to a white or welding heat, shingled under a forge hammer, and passed through the grooved rollers after the method described in the first patent.

The processes described by Cort in his two patents have been followed by iron manufacturers, with various modifications, the results of enlarged experience, down to the present time. After the lapse of seventy-eight years, the language employed by Cort continues on the whole a faithful description of the processes still practised: the same methods of manufacturing bar from cast-iron, and of puddling, piling, welding, and working the bar-iron through grooved rollers—all are nearly identical with the methods of manufacture perfected by Henry Cort in 1784. It may be mentioned that the development of the powers of the steam-engine by Watt had an extraordinary effect upon the production of iron. It created a largely increased demand for the article for the purposes of the shafting and machinery which it was employed to drive; while at the same time it cleared pits of water which before were unworkable, and by being extensively applied to the blowing of iron-furnaces and the working of the rolling-mills, it thus gave a still further impetus to the manufacture of the metal. It would be beside our purpose to enter into any statistical detail on the subject; but it will be sufficient to state that the production of iron, which in the early part of last century amounted to little more than 12,000 tons, about the middle of the century to about 18,000 tons, and at the time of Cort's inventions to about 90,000 tons, was found, in 1820, to have increased to 400,000 tons; and now the total quantity produced is upwards of four millions of tons of pig-iron every year, or more than the entire production of all other European countries. There is little reason to doubt that this extraordinary development of the iron manufacture has been in a great measure due to the inventions of Henry Cort. It is said that at the present time there are not fewer than 8200 of Cort's furnaces in operation in Great Britain alone.[5]

Practical men have regarded Cort's improvement of the process of rolling the iron as the most valuable of his inventions. A competent authority has spoken of Cort's grooved rollers as of "high philosophical interest, being scarcely less than the discovery of a new mechanical Power, in reversing the action of the wedge, by the application of force to four surfaces, so as to elongate a mass, instead of applying force to a mass to divide the four surfaces." One of the best authorities in the iron trade of last century, Mr. Alexander Raby of Llanelly, like many others, was at first entirely sceptical as to the value of Cort's invention; but he had no sooner witnessed the process than with manly candour he avowed his entire conversion to his views.

We now return to the history of the chief author of this great branch of national industry. As might naturally be expected, the principal ironmasters, when they heard of Cort's success, and the rapidity and economy with which he manufactured and forged bar-iron, visited his foundry for the purpose of examining his process, and, if found expedient, of employing it at their own works. Among the first to try it were Richard Crawshay of Cyfartha, Samuel Homfray of Penydarran (both in South Wales), and William Reynolds of Coalbrookdale. Richard Crawshay was then (in 1787) forging only ten tons of bar-iron weekly under the hammer; and when he saw the superior processes invented by Cort he readily entered into a contract with him to work under his patents at ten shillings a ton royalty, In 1812 a letter from Mr. Crawshay to the Secretary of Lord Sheffield was read to the House of Commons, descriptive of his method of working iron, in which he said, "I took it from a Mr. Cort, who had a little mill at Fontley in Hampshire: I have thus acquainted you with my method, by which I am now making more than ten thousand tons of bar-iron per annum." Samuel Homfray was equally prompt in adopting the new process. He not only obtained from Cort plans of the puddling-furnaces and patterns of the rolls, but borrowed Cort's workmen to instruct his own in the necessary operations; and he soon found the method so superior to that invented by Onions that he entirely confined himself to manufacturing after Cort's patent. We also find Mr. Reynolds inviting Cort to conduct a trial of his process at Ketley, though it does not appear that it was adopted by the firm at that time.[6]

The quality of the iron manufactured by the new process was found satisfactory; and the Admiralty having, by the persons appointed by them to test it in 1787, pronounced it to be superior to the best Oregrounds iron, the use of the latter was thenceforward discontinued, and Cort's iron only was directed to be used for the anchors and other ironwork in the ships of the Royal Navy. The merits of the invention seem to have been generally conceded, and numerous contracts for licences were entered into with Cort and his partner by the manufacturers of bar-iron throughout the country.[7] Cort himself made arrangements for carrying on the manufacture on a large scale, and with that object entered upon the possession of a wharf at Gosport, belonging to Adam Jellicoe, his partner's father, where he succeeded in obtaining considerable Government orders for iron made after his patents. To all ordinary eyes the inventor now appeared to be on the high road to fortune; but there was a fatal canker at the root of this seeming prosperity, and in a few years the fabric which he had so laboriously raised crumbled into ruins. On the death of Adam Jellicoe, the father of Cort's partner, in August, 1789,[8] defalcations were discovered in his public accounts to the extent of 39,676L, and his books and papers were immediately taken possession of by the Government. On examination it was found that the debts due to Jellicoe amounted to 89,657L, included in which was a sum of not less than 54,853L. owing to him by the Cort partnership. In the public investigation which afterwards took place, it appeared that the capital possessed by Cort being insufficient to enable him to pursue his experiments, which were of a very expensive character, Adam Jellicoe had advanced money from time to time for the purpose, securing himself by a deed of agreement entitling him to one-half the stock and profits of all his contracts; and in further consideration of the capital advanced by Jellicoe beyond his equal share, Cort subsequently assigned to him all his patent rights as collateral security. As Jellicoe had the reputation of being a rich man, Cort had not the slightest suspicion of the source from which he obtained the advances made by him to the firm, nor has any connivance whatever on the part of Cort been suggested. At the same time it must be admitted that the connexion was not free from suspicion, and, to say the least, it was a singularly unfortunate one. It was found that among the moneys advanced by Jellicoe to Cort there was a sum of 27,500L. entrusted to him for the payment of seamen's and officers' wages. How his embarrassments had tempted him to make use of the public funds for the purpose of carrying on his speculations, appears from his own admissions. In a memorandum dated the 11th November, 1782, found in his strong box after his death, he set forth that he had always had much more than his proper balance in hand, until his engagement, about two years before, with Mr. Cort, "which by degrees has so reduced me, and employed so much more of my money than I expected, that I have been obliged to turn most of my Navy bills into cash, and at the same time, to my great concern, am very deficient in my balance. This gives me great uneasiness, nor shall I live or die in peace till the whole is restored." He had, however, made the first false step, after which the downhill career of dishonesty is rapid. His desperate attempts to set himself right only involved him the deeper; his conscious breach of trust caused him a degree of daily torment which he could not bear; and the discovery of his defalcations, which was made only a few days before his death, doubtless hastened his end.

The Government acted with promptitude, as they were bound to do in such a case. The body of Jellicoe was worth nothing to them, but they could secure the property in which he had fraudulently invested the public moneys intrusted to him. With this object the them Paymaster of the Navy proceeded to make an affidavit in the Exchequer that Henry Cort was indebted to His Majesty in the sum of 27,500L. and upwards, in respect of moneys belonging to the public treasury, which "Adam Jellicoe had at different times lent and advanced to the said Henry Cort, from whom the same now remains justly due and owing; and the deponent saith he verily believes that the said Henry Cort is much decayed in his credit and in very embarrassed circumstances; and therefore the deponent verily believes that the aforesaid debt so due and owing to His Majesty is in great danger of being lost if some more speedy means be not taken for the recovery than by the ordinary process of the Court." Extraordinary measures were therefore adopted. The assignments of Cort's patents, which had been made to Jellicoe in consideration of his advances, were taken possession of; but Samuel Jellicoe, the son of the defaulter, singular to say, was put in possession of the properties at Fontley and Gosport, and continued to enjoy them, to Cort's exclusion, for a period of fourteen years. It does not however appear that any patent right was ever levied by the assignees, and the result of the proceeding was that the whole benefit of Cort's inventions was thus made over to the ironmasters and to the public. Had the estate been properly handled, and the patent rights due under the contracts made by the ironmasters with Cort been duly levied, there is little reason to doubt that the whole of the debt owing to the Government would have been paid in the course of a few years. "When we consider," says Mr. Webster, "how very simple was the process of demanding of the contracting ironmasters the patent due (which for the year 1789 amounted to 15,000L., in 1790 to 15,000L., and in 1791 to 25,000L.), and which demand might have been enforced by the same legal process used to ruin the inventor, it is not difficult to surmise the motive for abstaining." The case, however, was not so simple as Mr. Webster puts it; for there was such a contingency as that of the ironmasters combining to dispute the patent right, and there is every reason to believe that they were prepared to adopt that course.[9]

Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse