Evolution, Old & New - Or, the Theories of Buffon, Dr. Erasmus Darwin and Lamarck, - as compared with that of Charles Darwin
by Samuel Butler
Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse

"If not absolutely intoxicated, his spirits were in a high state of vinous exhilaration. On the boat approaching Nottingham, within the distance of a few fields, he surprised his companions by stepping, without any previous notice, from the boat into the middle of the river, and swimming to shore. They saw him get upon the bank, and walk coolly over the meadows towards the town: they called to him in vain, but he did not once turn his head.

"Anxious lest he should take a dangerous cold by remaining in his wet clothes, and uncertain whether or not he intended to desert the party, they rowed instantly to the town at which they had not designed to have touched, and went in search of their river-god.

"In passing through the market-place they saw him standing upon a tub, encircled by a crowd of people, and resisting the entreaties of an apothecary of the place, one of his old acquaintances, who was importuning him to his house, and to accept other raiments till his own could be dried.

"The party on pressing through the crowd were surprised to hear him speaking without any degree of his usual stammer:—'Have I not told you, my friend, that I had drank a considerable quantity of wine before I committed myself to the river. You know my general sobriety, and as a professional man you ought to know that the unusual existence of internal stimulus would, in its effects upon the system, counteract the external cold and moisture.'"

"Then perceiving his companions near him, he nodded, smiled, and waived his hand, as enjoining them silence, thus, without hesitation, addressing the populace:—

"'Ye men of Nottingham, listen to me. You are ingenious and industrious mechanics. By your industry life's comforts are procured for yourselves and families. If you lose your health the power of being industrious will forsake you. That you know, but you may not know that to breathe fresh and changed air constantly, is not less necessary to preserve health than sobriety itself. Air becomes unwholesome in a few hours if the windows are shut. Open those of your sleeping rooms whenever you quit them to go to your workshops. Keep the windows of your workshops open whenever the weather is not insupportably cold. I have no interest in giving you this advice; remember what I, your countryman and a physician, tell you. If you would not bring infection and disease upon yourselves, and to your wives and little ones, change the air you breathe, change it many times a day, by opening your windows.'

"So saying, he stepped down from the tub, and, returning with his party to their boat, they pursued their voyage."[146]

Could any missionary be more perfectly sober and sensible, or more alive to the immorality of trying to effect too sudden a modification in the organisms he was endeavouring to influence? If the men of Nottingham want a statue in their market-place, I would respectfully suggest that a subject is here afforded them.

* * * * *

"Dr. Johnson was several times at Lichfield on visits to Mrs. Lucy Porter, his daughter-in-law, while Dr. Darwin was one of the inhabitants. They had one or two interviews, but never afterwards sought each other. Mutual and strong dislike subsisted between them. It is curious that in Johnson's various letters to Mrs. Thrale, now Mrs. Piozzi, published by that lady after his death, many of them dated from Lichfield, the name of Darwin cannot be found, nor, indeed, that of any of the ingenious and lettered people who lived there; while of its mere common-life characters there is frequent mention, with many hints of Lichfield's intellectual barrenness, while it could boast a Darwin and other men of classical learning, poetic talents, and liberal information."[147]

Here there follows a pleasant sketch of the principal Lichfield notabilities, which I am compelled to omit.

"These were the men," exclaims Miss Seward, "whose intellectual existence passed unnoticed by Dr. Johnson in his depreciating estimate of Lichfield talents. But Johnson liked only worshippers. Archdeacon Vyse, Mr. Seward, and Mr. Robinson paid all the respect and attention to Dr. Johnson, on these his visits to their town, due to his great abilities, his high reputation, and to whatever was estimable in his mixed character; but they were not in the herd that 'paged his heels,' and sunk in servile silence under the force of his dogmas, when their hearts and their judgments bore contrary testimony.

"Certainly, however, it was an arduous hazard to the feelings of the company to oppose in the slightest degree Dr. Johnson's opinions. His stentor lungs; that combination of wit, humour, and eloquence, which 'could make the worse appear the better reason,' that sarcastic contempt of his antagonist, never suppressed or even softened by the due restraints of good breeding, were sufficient to close the lips in his presence, of men who could have met him in fair argument, on any ground, literary or political, moral or characteristic.

"Where Dr. Johnson was, Dr. Darwin had no chance of being heard, though at least his equal in genius, his superior in science; nor, indeed, from his impeded utterance, in the company of any overbearing declaimer; and he was too intellectually great to be an humble listener to Johnson. Therefore he shunned him on having experienced what manner of man he was. The surly dictator felt the mortification, and revenged it by affecting to avow his disdain of powers too distinguished to be objects of genuine scorn.

"Dr. Darwin, in his turn, was not much more just to Dr. Johnson's genius. He uniformly spoke of him in terms which, had they been deserved, would have justified Churchill's 'immane Pomposo' as an appellation of scorn; since if his person was huge, and his manners pompous and violent, so were his talents vast and powerful, in a degree from which only prejudice and resentment could withhold respect.

"Though Dr. Darwin's hesitation in speaking precluded his flow of colloquial eloquence, it did not impede, or at all lessen, the force of that conciser quality, wit. Of satiric wit he possessed a very peculiar species. It was neither the dead-doing broadside of Dr. Johnson's satire, nor the aurora borealis of Gray ... whose arch yet coy and quiet fastidiousness of taste and feeling, as recorded by Mason, glanced bright and cold through his conversation, while it seemed difficult to define its nature; and while its effects were rather perceived than felt, exciting surprise more than mirth, and never awakening the pained sense of being the object of its ridicule. That unique in humorous verse, the Long Story, is a complete and beautiful specimen of Gray's singular vein.

"Darwinian wit is not more easy to be defined; instances will best convey an idea of its character to those who never conversed with its possessor.

"Dr. Darwin was conversing with a brother botanist concerning the plant kalmia, then a just imported stranger in our greenhouses and gardens. A lady who was present, concluding he had seen it, which in fact he had not, asked the doctor what were the colours of the plant. He replied, 'Madam, the kalmia has precisely the colours of a seraph's wing.' So fancifully did he express his want of consciousness concerning the appearance of a flower, whose name and rareness were all he knew of the matter.

"Dr. Darwin had a large company at tea. His servant announced a stranger, lady and gentleman. The female was a conspicuous figure, ruddy, corpulent, and tall. She held by the arm a little, meek-looking, pale, effeminate man, who, from his close adherence to the side of the lady, seemed to consider himself as under her protection.

"'Dr. Darwin, I seek you not as a physician, but as a Belle Esprit. I make this husband of mine,' and she looked down with a side glance upon the animal, 'treat me every summer with a tour through one of the British counties, to explore whatever it contains worth the attention of ingenious people. On arriving at the several inns in our route I always search out the man of the vicinity most distinguished for his genius and taste, and introduce myself, that he may direct as the objects of our examination, whatever is curious in nature, art, or science. Lichfield will be our headquarters during several days. Come, doctor, whither must we go; what must we investigate to-morrow, and the next day, and the next? Here are my tablets and pencil.'

"'You arrive, madam, at a fortunate juncture. To-morrow you will have an opportunity of surveying an annual exhibition perfectly worthy your attention. To-morrow, madam, you will go to Tutbury bull-running.'

"The satiric laugh with which he stammered out the last word more keenly pointed this sly, yet broad rebuke to the vanity and arrogance of her speech. She had been up amongst the boughs, and little expected they would break under her so suddenly, and with so little mercy. Her large features swelled, and her eyes flashed with anger—'I was recommended to a man of genius, and I find him insolent and ill-bred.' Then, gathering up her meek and alarmed husband, whom she had loosed when she first spoke, under the shadow of her broad arm and shoulder, she strutted out of the room.

"After the departure of this curious couple, his guests told their host he had been very unmerciful. 'I chose,' replied he, 'to avenge the cause of the little man, whose nothingness was so ostentatiously displayed by his lady-wife. Her vanity has had a smart emetic. If it abates the symptoms, she will have reason to thank her physician who administered without hope of a fee.'"[148]

"In the spring of 1778 the children of Colonel and Mrs. Pole of Radburn, in Derbyshire, had been injured by a dangerous quantity of the cicuta, injudiciously administered to them in the hooping-cough by a physician of the neighbourhood. Mrs. Pole brought them to the house of Dr. Darwin in Lichfield, remaining with them there a few weeks, till by his art the poison was expelled from their constitutions and their health restored.

"Mrs. Pole was then in the full bloom of her youth and beauty. Agreeable features; the glow of health; a fine form, tall and graceful; playful sprightliness of manner; a benevolent heart, and maternal affection, in all its unwearied cares and touching tenderness, contributed to inspire Dr. Darwin's admiration, and to secure his esteem."[149]

"In the autumn of this year" (1778) "Mrs. Pole of Radburn was taken ill; her disorder a violent fever. Dr. Darwin was called in, and never perhaps since the death of Mrs. Darwin, prescribed with such deep anxiety. Not being requested to continue in the house during the ensuing night, which he apprehended might prove critical, he passed the remaining hours till day-dawn beneath a tree opposite her apartment, watching the passing and repassing lights in the chamber. During the period in which a life so passionately valued was in danger, he paraphrased Petrarch's celebrated sonnet, narrating a dream whose prophecy was accomplished by the death of Laura. It took place the night on which the vision arose amid his slumber. Dr. Darwin extended the thought of that sonnet into the following elegy:—

"Dread dream, that, hovering in the midnight air, Clasp'd with thy dusky wing my aching head, While to imagination's startled ear Toll'd the slow bell, for bright Eliza dead.

"Stretched on her sable bier, the grave beside, A snow-white shroud her breathless bosom bound, O'er her wan brow the mimic lace was tied, And loves and virtues hung their garlands round.

"From those cold lips did softest accents flow? Round that pale mouth did sweetest dimples play? On this dull cheek the rose of beauty blow, And those dim eyes diffuse celestial day?

"Did this cold hand, unasking Want relieve, Or wake the lyre to every rapturous sound? How sad for other's woe this breast would heave! How light this heart for other's transport bound!

"Beats not the bell again?—Heavens, do I wake? Why heave my sighs, why gush my tears anew? Unreal forms my trembling doubts mistake, And frantic sorrow fears the vision true.

"Dreams to Eliza bend thy airy flight, Go, tell my charmer all my tender fears, How love's fond woes alarm the silent night, And steep my pillow in unpitied tears."

Unwilling as I am to extend this memoir, I must give Miss Seward's criticism on the foregoing.

"The second verse of this charming elegy affords an instance of Dr. Darwin's too exclusive devotion to distinct picture in poetry; that it sometimes betrayed him into bringing objects so precisely to the eye as to lose in such precision their power of striking forcibly on the heart. The pathos in the second verse is much injured by the words 'mimic lace,' which allude to the perforated borders on the shroud. The expression is too minute for the solemnity of the subject. Certainly it cannot be natural for a shocked and agitated mind to observe, or to describe with such petty accuracy. Besides, the allusion is not sufficiently obvious. The reader pauses to consider what the poet means by 'mimic lace.' Such pauses deaden sensation and break the course of attention. A friend of the doctor's pleaded greatly that the line might run thus:—

"On her wan brow the shadowy crape was tied;"

but the alteration was rejected. Inattention to the rules of grammar in the first verse was also pointed out to him at the same time. The dream is addressed:

"Dread dream, that clasped my aching head,"

but nothing is said to it, and therefore the sense is left unfinished, while the elegy proceeds to give a picture of the lifeless beauty. The same friend suggested a change which would have remedied the defect. Thus:—

"Dread was the dream that in the midnight air Clasped with its dusky wing my aching head, While to" &c., &c.

"Hence not only the grammatic error would have been done away, but the grating sound produced by the near alliteration of the harsh dr in 'dread dream' removed, by placing those words at a greater distance from each other.

"This alteration was, for the same reason, rejected. The doctor would not spare the word hovering, which he said strengthened the picture; but surely the image ought not to be elaborately precise, by which a dream is transformed into an animal with black wings."[150]

Then Mrs. Pole got well, and the doctor wrote more verses and Miss Seward more criticism. It was not for nothing that Dr. Johnson came down to Lichfield.

* * * * *

In 1780 Colonel Pole died, and his widow, still young, handsome, witty, and—for those days—rich, was in no want of suitors.

"Colonel Pole," says Miss Seward, "had numbered twice the years of his fair wife. His temper was said to have been peevish and suspicious; yet not beneath those circumstances had her kind and cheerful attentions to him grown cold or remiss. He left her a jointure of 600l. per annum, a son to inherit his estate, and two female children amply portioned.

"Mrs. Pole, it has already been remarked, had much vivacity and sportive humour, with very engaging frankness of temper and manners. Early in her widowhood she was rallied in a large company upon Dr. Darwin's passion for her, and was asked what she would do with her captive philosopher. 'He is not very fond of churches, I believe,' said she, 'and even if he would go there for my sake, I shall scarcely follow him. He is too old for me.' 'Nay, Madam,' was the answer, 'what are fifteen years on the right side?' She replied, with an arch smile, 'I have had so much of that right side.'

"This confession was thought inauspicious for the doctor's hopes, but it did not prove so. The triumph of intellect was complete."[151]

Mrs. Pole had taken a strong dislike to Lichfield, and had made it a condition of her marriage that Dr. Darwin should not reside there after he had married her. In 1781, therefore, immediately after his marriage, he removed to Derby, and continued to live there till a fortnight before his death.

Here he wrote 'The Botanic Garden' and a great part of the 'Zoonomia.' Those who wish for a detailed analysis of 'The Botanic Garden' can hardly do better than turn to Miss Seward's pages. Opening them at random, I find the following:—

"The mention of Brindley, the father of commercial canals, has propriety as well as happiness. Similitude for their course to the sinuous track of a serpent, produces a fine picture of a gliding animal of that species, and it is succeeded by these supremely happy lines:—

"'So with strong arms immortal Brindley leads His long canals, and parts the velvet meads; Winding in lucid lines, the watery mass Mines the firm rock, or loads the deep morass;'[152] &c. &c. &c.

. . . . . .

"The mechanism of the pump is next described with curious ingenuity. Common as is the machine, it is not unworthy a place in this splendid composition, as being, after the sinking of wells, the earliest of those inventions, which in situations of exterior aridness gave ready accession to water. This familiar object is illustrated by a picture of Maternal Beauty administering sustenance to her infant."[153]

Here we will leave the poetical part of the 'Botanic Garden.' The notes, however, to which are "still," as Dr. Dowson says, "instructive and amusing," and contain matter which, at the time they were written, was for the most part new.

Of the 'Zoonomia' there is no occasion to speak here, as a sufficient number of extracts from those parts that concern us as bearing upon evolution will be given presently.

On the 18th of April, 1802, Dr. Darwin had written "one page of a very sprightly letter to Mr. Edgeworth, describing the Priory and his purposed alterations there, when the fatal signal was given. He rang the bell and ordered the servant to send Mrs. Darwin to him. She came immediately, with his daughter, Miss Emma Darwin. They saw him shivering and pale. He desired them to send to Derby for his surgeon, Mr. Hadley. They did so, but all was over before he could arrive.

"It was reported at Lichfield that, perceiving himself growing rapidly worse, he said to Mrs. Darwin, 'My dear, you must bleed me instantly.' 'Alas! I dare not, lest—' 'Emma, will you? There is no time to be lost.' 'Yes, my dear father, if you will direct me.' At that moment he sank into his chair and expired."[154]

Dr. Dowson gives the letter to Mr. Edgeworth, which is as follows:—

"Dear Edgeworth,

"I am glad to find that you still amuse yourself with mechanism, in spite of the troubles of Ireland.

"The use of turning aside or downwards the claw of a table, I don't see; as it must then be reared against a wall, for it will not stand alone. If the use be for carriage, the feet may shut up, like the usual brass feet of a reflecting telescope.

"We have all been now removed from Derby about a fortnight, to the Priory, and all of us like our change of situation. We have a pleasant house, a good garden, ponds full of fish, and a pleasing valley, somewhat like Shenstone's—deep, umbrageous, and with a talkative stream running down it. Our house is near the top of the valley, well screened by hills from the east and north, and open to the south, where at four miles distance we see Derby tower.

"Four or more strong springs rise near the house, and have formed the valley which, like that of Petrarch, may be called Val Chiusa, as it begins, or is shut at the situation of the house. I hope you like the description, and hope farther that yourself and any part of your family will sometimes do us the pleasure of a visit.

"Pray tell the authoress" (Miss Maria Edgeworth) "that the water-nymphs of our valley will be happy to assist her next novel.

"My bookseller, Mr. Johnson, will not begin to print the 'Temple of Nature' till the price of paper is fixed by Parliament. I suppose the present duty is paid...."

At these words Dr. Darwin's pen stopped. What followed was written on the opposite side of the paper by another hand.


[137] 'Sketch, &c., of Erasmus Darwin,' pp. 3, 4.

[138] Miss Seward's 'Memoirs of Dr. Darwin,' p. 3.

[139] Ibid.

[140] Dr. Dowson's 'Sketch of Dr. Erasmus Darwin,' p. 50.

[141] Dr. Dowson's 'Sketch of Dr. Darwin,' p. 53.

[142] Miss Seward's 'Memoirs,' &c., p. 6.

[143] 'Memoirs,' &c., p. 14.

[144] 'Memoirs,' &c., p. 21.

[145] 'Memoirs,' &c., p. 62.

[146] 'Memoirs,' &c., p. 68.

[147] Miss Seward's 'Memoirs,' p. 69.

[148] 'Memoirs,' &c., p. 84.

[149] Ibid., p. 105.

[150] 'Memoirs,' &c., p. 120.

[151] 'Memoirs,' &c., p. 149.

[152] 'Memoirs,' &c., p. 249.

[153] 'Memoirs,' &c., p. 250.

[154] 'Memoirs,' &c., p. 426.



Considering the wide reputation enjoyed by Dr. Darwin at the beginning of this century, it is surprising how completely he has been lost sight of. The 'Botanic Garden' was translated into Portuguese in 1803; the 'Loves of the Plants' into French and Italian in 1800 and 1805; while, as I have already said, the 'Zoonomia' had appeared some years earlier in Germany. Paley's 'Natural Theology' is written throughout at the 'Zoonomia,' though he is careful, more suo, never to mention this work by name. Paley's success was probably one of the chief causes of the neglect into which the Buffonian and Darwinian systems fell in this country. Dr. Darwin is as reticent about teleology as Buffon, and presumably for the same reason, but the evidence in favour of design was too obvious; Paley, therefore, with his usual keen-sightedness seized upon this weak point, and had the battle all his own way, for Dr. Darwin died the same year as that in which the 'Natural Theology' appeared. The unfortunate failure to see that evolution involves design and purpose as necessarily and far more intelligibly than the theological view of creation, has retarded our perception of many important facts for three-quarters of a century.

However this may be, Dr. Darwin's name has been but little before the public during the controversies of the last thirty years. Mr. Charles Darwin, indeed, in the "historical sketch" which he has prefixed to the later editions of his 'Origin of Species,' says, "It is curious how largely my grandfather, Dr. Erasmus Darwin, anticipated the views and erroneous grounds of opinion of Lamarck in his 'Zoonomia,' vol. i. pp. 500-510, published in 1794."[155] And a few lines lower Mr. Darwin adds, "It is rather a singular instance of the manner in which similar views arise at about the same time, that Goethe in Germany, and Geoffroy St. Hilaire (as we shall immediately see) in France, came to the same conclusion on the 'Origin of Species' in the years 1794-1796." Acquaintance with Buffon's work will explain much of the singularity, while those who have any knowledge of the writings of Dr. Darwin and Etienne Geoffroy St. Hilaire will be aware that neither would admit the other as "coming to the same conclusion," or even nearly so, as himself. Dr. Darwin goes beyond his successor, Lamarck, while Etienne Geoffroy does not even go so far as Dr. Darwin's predecessor, Buffon, had thought fit to let himself be known as going. I have found no other reference to Dr. Darwin in the 'Origin of Species,' except the two just given from the same note. In the first edition I find no mention of him.

The chief fault to be found with Dr. Darwin's treatise on evolution is that there is not enough of it; what there is, so far from being "erroneous," is admirable. But so great a subject should have had a book to itself, and not a mere fraction of a book. If his opponents, not venturing to dispute with him, passed over one book in silence, he should have followed it up with another, and another, and another, year by year, as Buffon and Lamarck did; it is only thus that men can expect to succeed against vested interests. Dr. Darwin could speak with a freedom that was denied to Buffon. He took Buffon at his word as well as he could, and carried out his principles to what he conceived to be their logical conclusion. This was doubtless what Buffon had desired and reckoned on, but, as I have said already, I question how far Dr. Darwin understood Buffon's humour; he does not present any of the phenomena of having done so, and therefore I am afraid he must be said to have missed it.

Like Buffon, Dr. Darwin had no wish to see far beyond the obvious; he missed good things sometimes, but he gained more than he lost; he knew that it is always on the margin, as it were, of the self-evident that the greatest purchase against the nearest difficulty is obtainable. His life was not one of Herculean effort, but, like the lives of all those organisms that are most likely to develop and transmit a useful modification, it was one of well-sustained activity; it was a long-continued keeping open of the windows of his own mind, much after the advice he gave to the Nottingham weavers. Dr. Darwin knew, and, I imagine, quite instinctively, that nothing tends to oversight like overseeing. He does not trouble himself about the origin of life; as for the perceptions and reasoning faculties of animals and plants, it is enough for him that animals and plants do things which we say involve sensation and consciousness when we do them ourselves or see others do them. If, then, plants and animals appear as if they felt and understood, let the matter rest there, and let us say they feel and understand—being guided by the common use of language, rather than by any theories concerning brain and nervous system. If any young writer happens to be in want of a subject, I beg to suggest that he may find his opportunity in a 'Philosophy of the Superficial.'

Though Dr. Darwin was more deeply impressed than Buffon with the oneness of personality between parents and offspring, so that these latter are not "new" creatures, but "elongations of the parents," and hence "may retain some of the habits of the parent system," he did not go on to infer definitely all that he might easily have inferred from such a pregnant premiss. He did not refer the repetition by offspring, of actions which their parents have done for many generations, but which they can never have seen those parents do, to the memory (in the strict sense of the word) of their having done those actions when they were in the persons of their parents; which memory, though dormant until awakened by the presence of associated ideas, becomes promptly kindled into activity when a sufficient number of these ideas are reproduced.

This, I gather, is the theory put forward by Professor Hering, of whose work, however, I know no more than is told us by Professor Ray Lankester in an article which, appeared in 'Nature,' July 13th, 1876. This theory seems to be adopted by Professor Haeckel, and to receive support from Professor Ray Lankester himself. Knowing no German, I have been unable to make myself acquainted with Professor Hering's position in detail, but its similarity to, if not identity with, that taken by myself subsequently, but independently, in 'Life and Habit,' seems sufficiently established by the following extracts; it is to be wished, however, that a full account of this lecture were accessible to English readers. The extracts are as follows:—

"Professor Hering has the merit of introducing some striking phraseology into his treatment of the subject which serves to emphasize the leading idea. He points out that since all transmission of 'qualities' from cell to cell in the growth and repair of one and the same organ, or from parent to offspring, is a transmission of vibrations or affections of material particles, whether these qualities manifest themselves as form, or as a facility for entering on a given series of vibrations, we may speak of all such phenomena as 'memory,' whether it be the conscious memory exhibited by the nerve cells of the brain or the unconscious memory we call habit, or the inherited memory we call instinct; or whether, again, it be the reproduction of parental form and minute structure. All equally may be called the 'memory of living matter.' From the earliest existence of protoplasm to the present day the memory of living matter is continuous. Though individuals die, the universal memory of living matter is carried on.

"Professor Hering, in short, helps us to a comprehensive conception of the nature of heredity and adaptation, by giving us the term 'memory' conscious or unconscious, for the continuity of Mr. Herbert Spencer's polar forces, or polarities of physiological units.

. . . . . .

"The undulatory movement of the plastidules is the key to the mechanical explanation of all the essential phenomena of life. The plastidules are liable to have their undulations affected by every external force, and, once modified, the movement does not return to its pristine condition. By assimilation they continually increase to a certain point in size, and then divide, and thus perpetuate in the undulatory movement of successive generations, the impressions or resultants due to the action of external agencies on individual plastidules. This is Memory. All plastidules possess memory; and Memory which we see in its ultimate analysis is identical with reproduction, is the distinguishing feature of the plastidule; is that which it alone of all molecules possesses, in addition to the ordinary properties of the physicist's molecule; is, in fact, that which distinguishes it as vital. To the sensitiveness of the movement of plastidules is due Variability—to their unconscious Memory the power of Hereditary Transmission. As we know them to-day they may 'have learnt little, and forgotten nothing' in one organism, and 'have learnt much, and forgotten much' in another; but in all, their memory if sometimes fragmentary, yet reaches back to the dawn of life upon the earth.—E. Ray Lankester."

Nothing can well be plainer and more uncompromising than the above. Professor Hering would, I gather, no less than myself, refer the building of its nest by a bird to the intense—but unconscious, owing to its very perfection and intensity—recollection by the bird of the nests it built when it was in the persons of its ancestors; this memory would begin to stimulate action when the surrounding associations, such as temperature, state of vegetation, &c., reminded it of the time when it had been in the habit of beginning to build in countless past generations. Dr. Darwin does not go so far as this. He says that wild birds choose spring as their building time "from their acquired knowledge that the mild temperature of the air is more convenient for hatching their eggs," and a little lower down he speaks of the fact that graminivorous animals generally produce their young in spring, as "part of the traditional knowledge which they learn from the example of their parents."[156]

Again he says, that birds "seem to be instructed how to build their nests from their observation of that in which they were educated, and from their knowledge of those things that are most agreeable to their touch in respect to warmth, cleanliness, and stability."

Had Dr. Darwin laid firmly hold of two superficial facts concerning memory which we can all of us test for ourselves—I mean its dormancy until kindled by the return of a sufficient number of associated ideas, and its unselfconsciousness upon becoming intense and perfect—and had he connected these two facts with the unity of life through successive generations—an idea which plainly haunted him—he would have been saved from having to refer instinct to imitation, in the face of the fact that in a thousand instances the creature imitating can never have seen its model, save when it was a part of its parents,—seeing what they saw, doing what they did, feeling as they felt, and remembering what they remembered.

Miss Seward tells us that Dr. Darwin read his chapter on instinct "to a lady who was in the habit of rearing canary birds. She observed that the pair which he then saw building their nest in her cage, were a male and female, who had been hatched and reared in that very cage, and were not in existence when the mossy cradle was fabricated in which they first saw light." She asked him, and quite reasonably, "how, upon his principle of imitation, he could account for the nest he then saw building, being constructed even to the precise disposal of every hair and shred of wool upon the model of that in which the pair were born, and on which every other canary bird's nest is constructed, when the proper materials are furnished. That of the pyefinch," she added, "is of much compacter form, warmer, and more comfortable. Pull one of these nests to pieces for its materials; and place another nest before these canary birds as a pattern, and see if they will make the slightest attempt to imitate their model! No, the result of their labour will, upon instinctive hereditary impulse, be exactly the slovenly little mansion of their race, the same with that which their parents built before themselves were hatched. The Doctor could not do away the force of that single fact, with which his system was incompatible, yet he maintained that system with philosophic sturdiness, though experience brought confutation from a thousand sources."[157]

As commonly happens in such disputes, both were right and both were wrong. The lady was right in refusing to refer instinct to imitation, and the Doctor was right in maintaining reason and instinct to be but different degrees of perfection of the same mental processes. Had he substituted "memory" for "imitation," and asked the lady to define "sameness" or "personal identity," he would have soon secured his victory.

The main fact, compared with which all else is a matter of detail, is the admission that instinct is only reason become habitual. This admission involves, consciously or unconsciously, the admission of all the principles contended for in 'Life and Habit'; principles which, if admitted, make the facts of heredity intelligible by showing that they are of the same character as other facts which we call intelligible, but denial of which makes nonsense of half the terms in common use concerning it. For the view that instinct is habitual reason involves sameness of personality and memory as common to parents and offspring; it involves also the latency of that memory till rekindled by the return of a sufficient number of its associated ideas, and points the unconsciousness with which habitual actions are performed. These principles being grasped, the infertility inter se of widely distant species, the commonly observed sterility of hybrids, the sterility of certain animals and plants under confinement, the phenomena of old age as well as those of growth, and the principle which underlies longevity and alternate generations, follow logically and coherently, as I showed in 'Life and Habit.' Moreover, we find that the terms in common use show an unconscious sense that some such view as I have insisted on was wanted and would come, for we find them made and to hand already; few if any will require altering; all that is necessary is to take common words according to their common meanings.

Dr. Darwin is very good on this head. Here, as everywhere throughout his work, if things or qualities appear to resemble one another sufficiently and without such traits of unlikeness, on closer inspection, as shall destroy the likeness which was apparent at first, he connects them, all theories notwithstanding. I have given two instances of his manner of looking at instinct and reason.[158] "If these are not," he concludes, "deductions from their own previous experience, or observation, all the actions of mankind must be resolved into instincts."[159]

If by "previous experience" we could be sure that Dr. Darwin persistently meant "previous experience in the persons of their ancestors," he would be in an impregnable position. As it is, we feel that though he had caught sight of the truth, and had even held it in his hands, yet somehow or other it just managed to slip through his fingers.

Again he writes:—

"So flies burn themselves in candles, deceived like mankind by the misapplication of their knowledge."


"An ingenious philosopher has lately denied that animals can enter into contracts, and thinks this an essential difference between them and the human creature: but does not daily observation convince us that they form contracts of friendship with each other and with mankind? When puppies and kittens play together is there not a tacit contract that they will not hurt each other? And does not your favourite dog expect you should give him his daily food for his services and attention to you? And thus barters his love for your protection? In the same manner that all contracts are made among men that do not understand each other's arbitrary language."[160]

One more extract from a chapter full of excellent passages must suffice.

"One circumstance I shall relate which fell under my own eye, and showed the power of reason in a wasp, as it is exercised among men. A wasp on a gravel walk had caught a fly nearly as large as himself; kneeling on the ground, I observed him separate the tail and the head from the body part, to which the wings were attached. He then took the body part in his paws, and rose about two feet from the ground with it; but a gentle breeze wafting the wings of the fly turned him round in the air, and he settled again with his prey upon the gravel. I then distinctly observed him cut off with his mouth first one of the wings and then the other, after which he flew away with it, unmolested by the wind.

"Go, proud reasoner, and call the worm thy sister!"[161]

Dr. Darwin's views on the essential unity of animal and vegetable life are put forward in the following admirable chapter on "Vegetable Animation," which I will give in full, and which is confirmed in all important respects by the latest conclusions of our best modern scientists, so, at least, I gather from Mr. Francis Darwin's interesting lecture.[162]

"I. 1. The fibres of the vegetable world, as well as those of the animal, are excitable into a variety of motion by irritations of external objects. This appears particularly in the mimosa or sensitive plant, whose leaves contract on the slightest injury: the Dionaea muscipula, which was lately brought over from the marshes of America, presents us with another curious instance of vegetable irritability; its leaves are armed with spines on their upper edge, and are spread on the ground around the stem; when an insect creeps on any of them in its passage to the flower or seed, the leaf shuts up like a steel rat-trap, and destroys its enemy.[163]

"The various secretions of vegetables as of odour, fruit, gum, resin, wax, honey, seem brought about in the same manner as in the glands of animals; the tasteless moisture of the earth is converted by the hop plant into a bitter juice; as by the caterpillar in the nutshell, the sweet powder is converted into a bitter powder. While the power of absorption in the roots and barks of vegetables is excited into action by the fluids applied to their mouths like the lacteals and lymphatics of animals.

"2. The individuals of the vegetable world may be considered as inferior or less perfect animals; a tree is a congeries of many living buds, and in this respect resembles the branches of the coralline, which are a congeries of a multitude of animals. Each of these buds of a tree has its proper leaves or petals for lungs, produces its viviparous or its oviparous offspring in buds or seeds; has its own roots, which, extending down the stem of the tree, are interwoven with the roots of the other buds, and form the bark, which is the only living part of the stem, is annually renewed and is superinduced upon the former bark, which then dies, and, with its stagnated juices gradually hardening into wood, forms the concentric circles which we see in blocks of timber.

"The following circumstances evince the individuality of the buds of trees. First, there are many trees whose whole internal wood is perished, and yet the branches are vegete and healthy. Secondly, the fibres of the bark of trees are chiefly longitudinal, resembling roots, as is beautifully seen in those prepared barks that were lately brought from Otaheita. Thirdly, in horizontal wounds of the bark of trees, the fibres of the upper lip are always elongated downwards like roots, but those of the lower lip do not approach to meet them. Fourthly, if you wrap wet moss round any joint of a vine, or cover it with moist earth, roots will shoot out from it. Fifthly, by the inoculation or engrafting of trees many fruits are produced from one stem. Sixthly, a new tree is produced from a branch plucked from an old one and set in the ground. Whence it appears that the buds of deciduous trees are so many annual plants, that the bark is a contexture of the roots of each individual bud, and that the internal wood is of no other use but to support them in the air, and that thus they resemble the animal world in their individuality.

"The irritability of plants, like that of animals, appears liable to be increased or decreased by habit; for those trees or shrubs which are brought from a colder climate to a warmer, put out their leaves and blossoms a fortnight sooner than the indigenous ones.

"Professor Kalm, in his travels in New York, observes that the apple trees brought from England blossom a fortnight sooner than the native ones. In our country, the shrubs that are brought a degree or two from the north are observed to flourish better than those which come from the south. The Siberian barley and cabbage are said to grow larger in this climate than the similar more southern vegetables; and our hoards of roots, as of potatoes and onions, germinate with less heat in spring, after they have been accustomed to the winter's cold, than in autumn, after the summer's heat.

"II. The stamens and pistils of flowers show evident marks of sensibility, not only from many of the stamens and some pistils approaching towards each other at the season of impregnation, but from many of them closing their petals and calyxes during the cold part of the day. For this cannot be ascribed to irritation, because cold means a defect of the stimulus of heat; but as the want of accustomed stimuli produces pain, as in coldness, hunger, and thirst of animals, these motions of vegetables in closing up their flowers must be ascribed to the disagreeable sensation, and not to the irritation of cold. Others close up their leaves during darkness, which, like the former, cannot be owing to irritation, as the irritating material is withdrawn.

"The approach of the anthers in many flowers to the stigmas, and of the pistils of some flowers to the anthers, must be ascribed to the passion of love, and hence belongs to sensation, not to irritation.

"III. That the vegetable world possesses some degree of voluntary powers appears from their necessity to sleep, which we have shown in Section XVIII. to consist in the temporary abolition of voluntary power. This voluntary power seems to be exerted in the circular movement of the tendrils of the vines, and other climbing vegetables; or in the efforts to turn the upper surfaces of their leaves, or their flowers, to the light.

"IV. The associations of fibrous motions are observable in the vegetable world as well as in the animal. The divisions of the leaves of the sensitive plant have been accustomed to contract at the same time from the absence of light; hence, if by any other circumstance, as a slight stroke or injury, one division is irritated into contraction, the neighbouring ones contract also from their motions being associated with those of the irritated part. So the various stamina of the class of syngenesia have been accustomed to contract together in the evening, and thence if you stimulate any one of them with a pin, according to the experiment of M. Colvolo, they all contract from their acquired associations.

"To evince that the collapsing of the sensitive plant is not owing to any mechanical vibrations propagated along the whole branch when a single leaf is struck with the finger, a leaf of it was slit with sharp scissors, with as little disturbance as possible, and some seconds of time passed before the plant seemed sensible of the injury, and then the whole branch collapsed as far as the principal stem. This experiment was repeated several times with the least possible impulse to the plant.

"V. 1. For the numerous circumstances in which vegetable buds are analogous to animals, the reader is referred to the additional notes at the end of 'Botanic Garden,' Part I. It is there shown that the roots of vegetables resemble the lacteal system of animals; the sap vessels in the early spring, before their leaves expand, are analogous to the placental vessels of the foetus; that the leaves of land plants resemble lungs, and those of aquatic plants the gills of fish; that there are other systems of vessels resembling the vena portarum of quadrupeds, or the aorta of fish; that the digestive power of vegetables is similar to that of animals converting the fluids which they absorb into sugar;[164] that their seeds resemble the eggs of animals, and their buds and bulbs their viviparous offspring; and lastly, that the anthers and stigmas are real animals attached to their parent tree like polypi or coral insects, but capable of spontaneous motion; that they are affected with the passion of love, and furnished with powers of reproducing their species, and are fed with honey like the moths and butterflies which plunder their nectaries.[165]

"The male flowers of Vallisneria approach still nearer to apparent animality, as they detach themselves from the parent plant, and float on the surface of the water to the female ones.[166] Other flowers of the classes of monoecia and dioecia, and polygamia discharge the fecundating farina, which, floating in the air, is carried to the stigma of the female flowers, and that at considerable distances. Can this be effected by any specific attraction? Or, like the diffusion of the odorous particles of flowers, is it left to the currents of the winds, and the accidental miscarriages of it counteracted by the quantity of its production?

"2. This leads us to a curious inquiry, whether vegetables have ideas of external things? As all our ideas are originally received by our senses, the question may be changed to whether vegetables possess any organs of sense? Certain it is that they possess a sense of heat and cold, another of moisture and dryness, and another of light and darkness, for they close their petals occasionally from the presence of cold, moisture, or darkness. And it has been already shown that these actions cannot be performed simply from irritation, because cold and darkness are negative quantities, and on that account sensation, or volition are implied, and in consequence a sensorium or union of their nerves. So when we go into the light we contract the iris; not from any stimulus of the light on the fine muscles of the iris, but from its motions being associated with the sensation of too much light upon the retina, which could not take place without a sensorium or centre of union of the nerves of the iris, with those of vision.[167]

"Besides these organs of sense, which distinguish cold, moisture, and darkness, the leaves of mimosa, and of dionaea, and of drosera, and the stamens of many flowers, as of the berbery, and the numerous class of syngenesia, are sensible to mechanic impact, that is, they possess a sense of touch, as well as a common sensorium, by the medium of which their muscles are excited into action. Lastly, in many flowers the anthers, when mature, approach the stigma, in others the female organ approaches to the male. In a plant of collinsonia, a branch of which is now before me, the two yellow stamens are about three-eighths of an inch high, and diverge from each other at an angle of about fifteen degrees, the purple style is half an inch high, and in some flowers is now applied to the stamen on the right hand, and in others to that of the left; and will, I suppose, change place to-morrow in those, where the anthers have not yet effused their powder.

"I ask by what means are the anthers in many flowers and stigmas in other flowers directed to find their paramours? How do either of them know that the other exists in their vicinity? Is this curious kind of storge produced by mechanic attraction, or by the sensation of love? The latter opinion is supported by the strongest analogy, because a reproduction of the species is the consequence; and then another organ of sense must be wanted to direct these vegetable amourettes to find each other, one probably analogous to our sense of smell, which in the animal world directs the new-born infant to its source of nourishment, and they may thus possess a faculty of perceiving as well as of producing odours.

"Thus, besides a kind of taste at the extremity of their roots, similar to that of the extremities of our lacteal vessels, for the purpose of selecting their proper food, and besides different kinds of irritability residing in the various glands, which separate honey, wax, resin, and other juices from their blood; vegetable life seems to possess an organ of sense to distinguish the variations of heat, another to distinguish the varying degrees of moisture, another of light, another of touch, and probably another analogous to our sense of smell. To these must be added the indubitable evidence of their passion of love, and I think we may truly conclude that they are furnished with a common sensorium for each bud, and that they must occasionally repeat those perceptions, either in their dreams or waking hours, and consequently possess ideas of so many of the properties of the external world, and of their own existence."[168]


[155] 'Origin of Species,' note on p. xiv.

[156] 'Zoonomia,' vol. i. p. 170.

[157] Miss Seward's 'Memoirs,' &c., p. 491.

[158] See p. 116 of this volume.

[159] 'Zoonomia,' vol. i. p. 184.

[160] 'Zoonomia,' p. 171.

[161] 'Zoonomia,' p. 187.

[162] 'Nature,' March 14 and 21, 1878.

[163] See 'Botanic Garden,' part ii., note on Silene.

[164] 'On the Digestive Powers of Plants.' See Mr. Francis Darwin's lecture, already referred to.

[165] See 'Botanic Garden, part i., add. note, p. xxxix.

[166] Ibid., part ii., art. "Vallisneria."

[167] See 'Botanic Garden,' part i. cant 3, l. 440.

[168] 'Zoonomia,' vol. i. p. 107.



The following are the passages in the 'Zoonomia' which have the most important bearing on evolution:—

"The ingenious Dr. Hartley, in his work on man, and some other philosophers have been of opinion, that our immortal part acquires during this life certain habits of action or of sentiment which become for ever indissoluble, continuing after death in a future state of existence; and add that if these habits are of the malevolent kind, they must render their possessor miserable even in Heaven. I would apply this ingenious idea to the generation or production of the embryon or new animal, which partakes so much of the form and propensities of its parent.

"Owing to the imperfection of language the offspring is termed a new animal, but is in truth a branch or elongation of the parent, since a part of the embryon-animal is, or was, a part of the parent, and therefore in strict language, cannot be said to be entirely new at the time of its production; and, therefore, it may retain some of the habits of the parent system.

"At the earliest period of its existence the embryon would seem to consist of a living filament with certain capabilities of irritation, sensation, volition, and association, and also with some acquired habits or propensities peculiar to the parents; the former of these are in common with other animals; the latter seem to distinguish or produce the kind of animal, whether man or quadruped, with the similarity of feature or form to the parent."[169]

* * * * *

Going on to describe the gradual development of the embryo, Dr. Darwin continues:—

"As the want of this oxygenation of the blood is perpetual (as appears from the incessant necessity of breathing by lungs or gills), the vessels become extended by the efforts of pain or desire to seek this necessary object of oxygenation, and to remove the disagreeable sensations which this want occasions."[170]

. . . . . .

"The lateral production of plants by wires, while each new plant is thus chained to its parent, and continues to put forth another and another as the wire creeps onward on the ground, is exactly resembled by the tape-worm or taenia, so often found in the bowels, stretching itself in a chain quite from the stomach to the rectum. Linnaeus asserts 'that it grows old at one extremity, while it continues to generate younger ones at the other, proceeding ad infinitum like a sort of grass; the separate joints are called gourd worms, and propagate new joints like the parent without end, each joint being furnished with its proper mouth and organs of digestion.'"[171]

. . . . . .

"Many ingenious philosophers have found so great difficulty in conceiving the manner of the reproduction of animals, that they have supposed all the numerous progeny to have existed in miniature in the animal originally created; and that these infinitely minute forms are only evolved or distended, as the embryon increases in the womb. This idea, besides its being unsupported by any analogy we are acquainted with, ascribes a greater tenuity to organized matter than we can readily admit; as these included embryons are supposed each of them to consist of the various and complicate parts of animal bodies, they must possess a much greater degree of minuteness than that which was ascribed to the devils which tempted St. Anthony, of whom 20,000 were said to have been able to dance a saraband on the point of the finest needle without incommoding one another."[172]

. . . . . .

"I conceive the primordium or rudiment of the embryon as secreted from the blood of the parent to consist of a simple living filament as a muscular fibre; which I suppose to be an extremity of a nerve of locomotion, as a fibre of the retina is an extremity of a nerve of sensation; as, for instance, one of the fibrils which compose the mouth of an absorbent vessel. I suppose this living filament of whatever form it may be, whether sphere, cube, or cylinder, to be endued with the capability of being excited into action by certain kinds of stimulus. By the stimulus of the surrounding fluid in which it is received from the male it may bend into a ring, and thus form the beginning of a tube. Such moving filaments and such rings are described by those who have attended to microscopic animalculae. This living ring may now embrace or absorb a nutritive particle of the fluid in which it swims; and by drawing it into its pores, or joining it by compression to its extremities, may increase its own length or crassitude, and by degrees the living ring may become a living tube.

"With this new organization, or accretion of parts, new kinds of irritability may commence; for so long as there was but one living organ it could only be supposed to possess irritability; since sensibility may be conceived to be an extension of the effect of irritability over the rest of the system. These new kinds of irritability and of sensibility in consequence of new organization appear from variety of facts in the more mature animals; thus ... the lungs must be previously formed before their exertions to obtain fresh air can exist; the throat, or oesophagus, must be formed previous to the sensation or appetites of hunger and thirst, one of which seems to reside at the upper end and the other at the lower end of that canal."[173]

It seems to me Dr. Darwin is wrong in supposing that the organ must have preceded the power to use it. The organ and its use—the desire to do and the power to do—have always gone hand in hand, the organism finding itself able to do more according as it advanced its desires, and desiring to do more simultaneously with any increase in power, so that neither appetency nor organism can claim precedence, but power and desire must be considered as Siamese twins begotten together, conceived together, born together, and inseparable always from each other. At the same time they are torn by mutual jealousy; each claims, with some vain show of reason, to have been the elder brother; each intrigues incessantly from the beginning to the end of time to prevent the other from outstripping him; each is in turn successful, but each is doomed to death with the extinction of the other.

"So inflamed tendons and membranes, and even bones, acquire new sensations; and the parts of mutilated animals, as of wounded snails and polypi and crabs, are reproduced; and at the same time acquire sensations adapted to their situation. Thus when the head of a snail is reproduced after decollation with a sharp razor, those curious telescopic eyes are also reproduced, and acquire their sensibility to light, as well as their adapted muscles for retraction on the approach of injury.

"With every change, therefore, of organic form or addition of organic parts, I suppose a new kind of irritability or of sensibility to be produced; such varieties of irritability or of sensibility exist in our adult state in the glands; every one of which is furnished with an irritability or a taste or appetency, and a consequent mode of action peculiar to itself.

"In this manner I conceive the vessels of the jaws to produce those of the teeth; those of the fingers to produce the nails; those of the skin to produce the hair; in the same manner as afterwards, about the age of puberty, the beard and other great changes in the form of the body and disposition of the mind are produced in consequence of new developments; for, if the animal is deprived of these developments, those changes do not take place. These changes I believe to be formed not by elongation or distension of primeval stamina, but by apposition of parts; as the mature crab fish when deprived of a limb, in a certain space of time, has power to regenerate it; and the tadpole puts forth its feet after its long exclusion from the spawn, and the caterpillar in changing into a butterfly acquires a new form with new powers, new sensations, and new desires."[174]

. . . . . .

"From hence I conclude that with the acquisition of new parts, new sensations and new desires, as well as new powers are produced; and this by accretion to the old ones and not by distension of them. And finally, that the most essential parts of the system, as the brain for the purpose of distributing the powers of life, and the placenta for the purpose of oxygenating the blood, and the additional absorbent vessels, for the purpose of acquiring aliment, are first formed by the irritations above mentioned, and by the pleasurable sensations attending those irritations, and by the exertions in consequence of painful sensations similar to those of hunger and suffocation. After these an apparatus of limbs for future uses, or for the purpose of moving the body in its present natant state, and of lungs for future respiration, and of testes for future reproduction, are formed by the irritations and sensations and consequent exertions of the parts previously existing, and to which the new parts are to be attached.[175]

. . . . . .

"The embryon" must "be supposed to be a living filament, which acquires or makes new parts, with new irritabilities as it advances in its growth."[176]

. . . . . .

"From this account of reproduction it appears that all animals have a similar origin, viz. a single living filament; and that the difference of their forms and qualities has arisen only from the different irritabilities and sensibilities, or voluntarities, or associabilities, of this original living filament, and perhaps in some degree from the different forms of the particles of the fluids by which it has at first been stimulated into activity."[177]

. . . . . .

"All animals, therefore, I contend, have a similar cause of their organization, originating from a single living filament, endued with different kinds of irritabilities and sensibilities, or of animal appetencies, which exist in every gland, and in every moving organ of the body, and are as essential to living organism as chemical affinities are to certain combinations of inanimate matter.

"If I might be indulged to make a simile in a philosophical work, I should say that the animal appetencies are not only perhaps less numerous originally than the chemical affinities, but that, like these latter, they change with every fresh combination; thus vital air and azote, when combined, produce nitrous acid, which now acquires the property of dissolving silver; so that with every new additional part to the embryon, as of the throat or lungs, I suppose a new animal appetency to be produced."[178]

* * * * *

Here, again, it should be insisted on that neither can the "additional part" precede "the appetency," nor the appetency precede the additional part for long together—the two advance nearly pari passu; sometimes the power a little ahead of the desire, stimulates the desire to an activity it would not otherwise have known; as those who have more money than they once had, feel new wants which they would not have known if they had not obtained the power to gratify them; sometimes, on the other hand, the desire is a little more active than the power, and pulls the power up to itself by means of the effort made to gratify the desire—as those who want a little more of this or that than they have money to pay for, will try all manner of shifts to earn the additional money they want, unless it is so much in excess of their present means that they give up the endeavour as hopeless; but whichever gets ahead, immediately sets to work to pull the other level with it, the getting ahead either of power or desire being exclusively the work of external agencies, while the coming up level of the other is due to agencies that are incorporate with the organism itself. Thus an unusually abundant supply of food, due to causes entirely beyond the control of the individual, is an external agency; it will immediately set power a little ahead of desire. On this the individual will eat as much as it can—thus learning pro tanto to be able to eat more, and to want more under ordinary circumstances—and will also breed rapidly up to the balance of the abundance. This is the work of the agencies incorporate in the organism, and will bring desire level with power again. Famine, on the other hand, puts desire ahead of power, and the incorporate agencies must either bring power up by resource and invention, or must pull desire back by eating less, both as individuals, and as the race, that is to say, by breeding less freely; for breeding is an assimilation of outside matter so closely akin to feeding, that it is only the feeding of the race, as against that of the individual.

I do not think the reader will find any clearer manner of picturing to himself the development of organism than by keeping the normal growth of wealth continually in his mind. He will find few of the phenomena of organic development which have not their counterpart in the acquisition of wealth. Thus a too sudden acquisition, owing to accidental and external circumstances and due to no internal source of energy, will be commonly lost in the next few generations. So a sudden sport due to a lucky accident of soil will not generally be perpetuated if the offspring plant be restored to its normal soil. Again, if the advance in power carry power suddenly far beyond any past desire, or be far greater than any past-remembered advance of power beyond desire—then desire will not come up level easily, but only with difficulty and all manner of extravagance, such as is likely to destroy the power itself. Demand and Supply are also good illustrations.

But to return to Dr. Darwin.

"When we revolve in our minds," he writes, "first the great changes which we see naturally produced in animals after their nativity, as in the production of the butterfly with painted wings from the crawling caterpillar; or of the respiring frog from the subnatant tadpole; from the boy to the bearded man, from the infant girl to the woman,—in both which cases mutilation will prevent due development.

"Secondly, when we think over the great changes introduced into various animals by artificial or accidental cultivation, as in horses, which we have exercised for the different purposes of strength or swiftness, in carrying burthens or in running races, or in dogs which have been cultivated for strength and courage, as the bull-dog; or for acuteness of his sense of smell, as the hound or spaniel; or for the swiftness of his foot, as the greyhound; or for his swimming in the water or for drawing snow sledges, as the rough-haired dogs of the north; or, lastly, as a play dog for children, as the lapdog; with the changes of the forms of the cattle which have been domesticated from the greatest antiquity, as camels and sheep, which have undergone so total a transformation that we are now ignorant from what species of wild animal they had their origin. Add to these the great changes of shape and colour which we daily see produced in smaller animals from our domestication of them, as rabbits or pigeons, or from the difference of climates and even of seasons; thus the sheep of warm climates are covered with hair instead of wool; and the hares and partridges of the latitudes which are long buried in snow become white during the winter months; add to these the various changes produced in the forms of mankind by their early modes of exertion, or by the diseases occasioned by their habits of life, both of which become hereditary, and that through many generations. Those who labour at the anvil, the oar, or the loom, as well as those who carry sedan chairs or who have been educated to dance upon the rope, are distinguishable by the shape of their limbs; and the diseases occasioned by intoxication deform the countenance with leprous eruptions, or the body with tumid viscera, or the joints with knots and distortions.

"Thirdly, when we enumerate the great changes produced in the species of animals before their nativity, as, for example, when the offspring reproduces the effects produced upon the parent by accident or cultivation; or the changes produced by the mixture of species, as in mules; or the changes produced probably by the exuberance of nourishment supplied to the fetus, as in monstrous births with additional limbs; many of these enormities of shape are propagated and continued as a variety at least, if not as a new species of animal. I have seen a breed of cats with an additional claw on every foot; of poultry also with an additional claw, and with wings to their feet; and of others without rumps. Mr. Buffon mentions a breed of dogs without tails which are common at Rome and Naples—which he supposes to have been produced by a custom long established of cutting their tails close off. There are many kinds of pigeons admired for their peculiarities which are more or less thus produced and propagated.[179]

. . . . . .

"When we consider all these changes of animal form and innumerable others which may be collected from the books of natural history, we cannot but be convinced that the fetus or embryon is formed by apposition of new parts, and not by the distention of a primordial nest of germs included one within another like the cups of a conjurer.

"Fourthly, when we revolve in our minds the great similarity of structure which obtains in all the warm-blooded animals, as well quadrupeds, birds, and amphibious animals, as in mankind; from the mouse and bat to the elephant and whale; one is led to conclude that they have alike been produced from a similar living filament. In some this filament in its advance to maturity has acquired hands and fingers with a fine sense of touch, as in mankind. In others it has acquired claws or talons, as in tigers and eagles. In others, toes with an intervening web or membrane, as in seals and geese. In others it has acquired cloven hoofs, as in cows and swine; and whole hoofs in others, as in the horse: while in the bird kind this original living filament has put forth wings instead of arms or legs, and feathers instead of hair. In some it has protruded horns on the forehead instead of teeth in the fore part of the upper jaw; in others, tusks instead of horns; and in the others, beaks instead of either. And all this exactly as is seen daily in the transmutation of the tadpole, which acquires legs and lungs when he wants them, and loses his tail when it is no longer of service to him.

"Fifthly, from their first rudiment or primordium to the termination of their lives, all animals undergo perpetual transformations; which are in part produced by their own exertions in consequence of their desires and aversions, of their pleasures and their pains, or of irritations or of associations; and many of these acquired forms or propensities are transmitted to their posterity.

"As air and water are supplied to animals in sufficient profusion, the three great objects of desire which have changed the forms of many animals by their desires to gratify them are those of lust, hunger, and security. A great want of one part of the animal world has consisted in the desire of the exclusive possession of the females; and these have acquired weapons to combat each other for this purpose, as the very thick, shield-like, horny skin on the shoulder of the boar is a defence only against animals of his own species who strike obliquely upwards, nor are his tusks for other purposes except to defend himself, as he is not naturally a carnivorous animal. So the horns of the stag are sharp to offend his adversary, but are branched for the purpose of parrying or receiving the thrust of horns similar to his own, and have therefore been formed for the purpose of combating other stags, for the exclusive possession of the females; who are observed like the ladies in the times of chivalry to attend the car of the victor.

"The birds which do not carry food to their young, and do not therefore marry, are armed with spurs for the purpose of fighting for the exclusive possession of the females, as cocks and quails. It is certain that these weapons are not provided for their defence against other adversaries, because the females of these species are without this armour. The final cause of this contest among the males seems to be that the strongest and most active animal should propagate the species, which should thence become improved."[180]

Dr. Darwin would have been on stronger ground if he had said that the effect of the contest among the males was that the fittest should survive, and hence transmit any fit modifications which had occurred to them as vitally true, rather than that the desire to attain this end had caused the contest; but either way the sentence just given is sufficient to show that he was not blind to the fact that the fittest commonly survive, and to the consequences of this fact. The use, however, of the word "thence," as well as of the expression "final cause," is loose, as Dr. Darwin would no doubt readily have admitted. Improvement in the species is due quite as much, by Dr. Darwin's own showing, to the causes which have led to such and such an animal's making itself the fittest, as to the fact that if fittest it will be more likely to survive and transmit its improvement. There have been two factors in modification; the one provides variations, the other accumulates them; neither can claim exclusive right to the word "thence," as though the modification was due to it and to it only. Dr. Darwin's use of the word "thence" here is clearly a slip, and nothing else; but it is one which brings him for the moment into the very error into which his grandson has fallen more disastrously.

"Another great want," he continues, "consists in the means of procuring food, which has diversified the forms of all species of animals. Thus the nose of the swine has become hard for the purpose of turning up the soil in search of insects and of roots. The trunk of the elephant is an elongation of the nose for the purpose of pulling down the branches of trees for his food, and for taking up water without bending his knees. Beasts of prey have acquired strong jaws or talons. Cattle have acquired a rough tongue and a rough palate to pull off the blades of grass, as cows and sheep. Some birds have acquired harder beaks to crack nuts, as the parrot. Others have acquired beaks to break the harder seeds, as sparrows. Others for the softer kinds of flowers, or the buds of trees, as the finches. Other birds have acquired long beaks to penetrate the moister soils in search of insects or roots, as woodcocks, and others broad ones to filtrate the water of lakes and to retain aquatic insects. All which seem to have been gradually produced during many generations by the perpetual endeavour of the creature to supply the want of food, and to have been delivered to their posterity with constant improvement of them for the purposes required.

"The third great want among animals is that of security, which seems to have diversified the forms of their bodies and the colour of them; these consist in the means of escaping other animals more powerful than themselves. Hence some animals have acquired wings instead of legs, as the smaller birds, for purposes of escape. Others, great length of fin or of membrane, as the flying fish and the bat. Others have acquired hard or armed shells, as the tortoise and the Echinus marinus.

"Mr. Osbeck, a pupil of Linnaeus, mentions the American frog-fish, Lophius Histrio, which inhabits the large floating islands of sea-weed about the Cape of Good Hope, and has fulcra resembling leaves, that the fishes of prey may mistake it for the sea-weed, which it inhabits.[181]

"The contrivances for the purposes of security extend even to vegetables, as is seen in the wonderful and various means of their concealing or defending their honey from insects and their seeds from birds. On the other hand, swiftness of wing has been acquired by hawks and swallows to pursue their prey; and a proboscis of admirable structure has been acquired by the bee, the moth, and the humming bird for the purpose of plundering the nectaries of flowers. All which seem to have been formed by the original living filament, excited into action by the necessities of the creatures which possess them, and on which their existence depends.

"From thus meditating on the great similarity of the structure of the warm-blooded animals, and at the same time of the great changes they undergo both before and after their nativity; and by considering in how minute a portion of time many of the changes of animals above described have been produced; would it be too bold to imagine that in the great length of time since the earth began to exist, perhaps millions of ages before the commencement of the history of mankind—would it be too bold to imagine that all warm-blooded animals have arisen from one living filament, which the Great First Cause endued with animality, with the power of attaining new parts, attended with new propensities, directed by irritations, sensations, volitions, and associations; and thus possessing the faculty of continuing to improve, by its own inherent activity, and of delivering down those improvements by generation to its posterity world without end!

"Sixthly, the cold-blooded animals, as the fish tribes, which are furnished with but one ventricle of the heart, and with gills instead of lungs, and with fins instead of feet or wings, bear a great similarity to each other; but they differ nevertheless so much in their general structure from the warm-blooded animals, that it may not seem probable at first view that the same living filament could have given origin to this kingdom of animals, as to the former. Yet are there some creatures which unite or partake of both these orders of animation, as the whales and seals; and more particularly the frog, who changes from an aquatic animal furnished with gills to an aerial one furnished with lungs.

"The numerous tribes of insects without wings, from the spider to the scorpion, from the flea to the lobster; or with wings, from the gnat or the ant to the wasp and the dragon-fly, differ so totally from each other, and from the red-blooded classes above described, both in the forms of their bodies and in their modes of life; besides the organ of sense, which they seem to possess in their antennae or horns, to which it has been thought by some naturalists that other creatures have nothing similar; that it can scarcely be supposed that this nature of animals could have been produced by the same kind of living filament as the red-blooded classes above mentioned. And yet the changes which many of them undergo in their early state to that of their maturity, are as different as one animal can be from another. As those of the gnat, which passes his early state in water, and then stretching out his new wings and expanding his new lungs, rises in the air; as of the caterpillar and bee-nymph, which feed on vegetable leaves or farina, and at length bursting from their self-formed graves, become beautiful winged inhabitants of the skies, journeying from flower to flower, and nourished by the ambrosial food of honey.

"There is still another class of animals which are termed vermes by Linnaeus, which are without feet or brain, and are hermaphrodites, as worms, leeches, snails, shell-fish, coralline insects, and sponges, which possess the simplest structure of all animals, and appear totally different from those already described. The simplicity of their structure, however, can afford no argument against their having been produced from a single living filament, as above contended.

"Last of all, the various tribes of vegetables are to be enumerated amongst the inferior orders of animals. Of these the anthers and stigmas have already been shown to possess some organs of sense, to be nourished by honey, and to have the power of generation like insects, and have thence been announced amongst the animal kingdom in Section XIII.; and to these must be added the buds and bulbs, which constitute the viviparous offspring of vegetation. The former I suppose to be beholden to a single living filament for their seminal or amatorial procreation; and the latter to the same cause for their lateral or branching generation, which they possess in common with the polypus, taenia, and volvox, and the simplicity of which is an argument in favour of the similarity of its cause.

"Linnaeus supposes, in the introduction to his natural orders, that very few vegetables were at first created, and that their numbers were increased by their intermarriages, and adds, 'Suaderet haec Creatoris leges a simplicibus ad composita.' Many other changes appear to have arisen in them by their perpetual contest for light and air above ground, and for food or moisture beneath the soil. As noted in the 'Botanic Garden,' Part II., note on Cuscuta. Other changes of vegetables from climate or other causes are remarked in the note on Curcuma in the same work. From these one might be led to imagine that each plant at first consisted of a single bulb or flower to each root, as the gentianella and daisy, and that in the contest for air and light, new buds grew on the old decaying flower-stem, shooting down their elongated roots to the ground, and that in process of ages tall trees were thus formed, and an individual bulb became a swarm of vegetables. Other plants which in this contest for light and air were too slender to rise by their own strength, learned by degrees to adhere to their neighbours, either by putting forth roots like the ivy, or by tendrils like the vine, or by spiral contortions like the honeysuckle, or by growing upon them like the mistleto, and taking nourishment from their barks, or by only lodging or adhering on them and deriving nourishment from the air as tillandsia.

"Shall we then say that the vegetable living filament was originally different from that of each tribe of animals above described? And that the productive living filament of each of those tribes was different from the other? Or as the earth and ocean were probably peopled with vegetable productions long before the existence of animals; and many families of these animals, long before other families of them, shall we conjecture that one and the same kind of living filament is and has been the cause of all organic life?[182]

. . . . . .

"The late Mr. David Hume in his posthumous works places the powers of generation much above those of our boasted reason, and adds, that reason can only make a machine, as a clock or a ship, but the power of generation makes the maker of the machine; and probably from having observed that the greatest part of the earth has been formed out of organic recrements, as the immense beds of limestone, chalk, marble, from the shells of fish; and the extensive provinces of clay, sandstone, ironstone, coals, from decomposed vegetables; all of which have been first produced by generation, or by the secretion of organic life; he concludes that the world itself might have been generated rather than created; that it might have been gradually produced from very small beginnings, increasing by the activity of its inherent principles, rather than by a sudden evolution of the whole by the Almighty fire. What a magnificent idea of the infinite power of the great Architect! The Cause of causes! Parent of parents! Ens entium!"[183]


[169] 'Zoonomia,' vol. i. p. 484.

[170] Ibid. p. 485.

[171] Ibid. p. 493.

[172] 'Zoonomia,' vol. i. p. 494.

[173] 'Zoonomia,' vol. i. p. 497.

[174] 'Zoonomia,' vol. i. p. 498.

[175] 'Zoonomia,' vol. i. p. 500.

[176] Ibid. p. 501.

[177] Ibid. p. 502.

[178] 'Zoonomia,' vol. i. p. 503.

[179] 'Zoonomia,' vol. i. p. 505.

[180] 'Zoonomia,' vol. i. p. 507.

[181] 'Voyage to China,' p. 113.

[182] 'Zoonomia,' vol. i. p. 511.

[183] 'Zoonomia,' vol. i. p. 513.



I take the following memoir of Lamarck entirely from the biographical sketch prefixed by M. Martins to his excellent edition of the 'Philosophie Zoologique.'[184] From this sketch I find that "Lamarck was born August 1, 1744, at Barenton, in Picardy, being the eleventh child of Pierre de Monet, squire of the place, a man of old family, but poor. His father intended him for the Church, the ordinary resource of younger sons at that time, and accordingly placed him under the care of the Jesuits at Amiens. But this was not his vocation: the annals of his family spoke all to him of military glory; his eldest brother had died in the breaches at the siege of Bergen-op-Zoom; two others were still serving in the army, and France was exhausting her energies in an unequal struggle. His father would not yield to his wishes, but on his death, in 1760, Lamarck was left free to take his own line, and made his way at once—upon a very bad horse—to the army of Germany, then encamped at Lippstadt in Westphalia.

"He was the bearer of a letter written by Madame de Lameth, one of his neighbours in the country, and recommending him to M. de Lastic, colonel of the regiment of Beaujolais. This gentleman, on seeing before him a lad of seventeen, whose somewhat stunted growth made him look still younger than he really was, sent the youth immediately to his own quarters. The next day a battle was immediately impending, and M. de Lastic, on passing his regiment in review, saw his protege in the first rank of a company of grenadiers. The French army was under the orders of the Marshal de Broglie and of the Prince de Soubise; the allied troops were commanded by Ferdinand of Brunswick. The two French generals were beaten owing to their divided counsels, and Lamarck's company, almost annihilated by the enemy's fire, was forgotten in the confusion of the retreat. All the officers, commissioned and non-commissioned, were killed, and only fourteen men out of the whole company remained alive: the eldest proposed to retreat, but Lamarck, improvising himself as commander, declared that they ought not to retire without orders. Presently the colonel seeing that this company did not rally sent an orderly officer who made his way up to it by protected paths. Next day Lamarck was made an officer, and shortly afterwards lieutenant.

"Fortunately for science," continues M. Martins, "this brilliant debut was not to decide his career. After peace had been signed he was sent into garrison at Toulon and Monaco, where an inflammation of the lymphatic ganglions of the neck necessitated an operation which left him deeply scarred for life.

"The vegetation in the neighbourhood of Toulon and Monaco now arrested the young officer's attention. He had already derived some little knowledge of botany from the 'Traite des Plantes usuelles' of Chomel. Having retired from the service, and having nothing beyond his modest pension of four hundred francs a year, he took a situation at Paris with a banker; but drawn irresistibly to the study of nature, he used to study from his attic window the forms and movements of clouds, and made himself familiar with the plants in the Jardin du Roi or in the public gardens. He began to feel that he was on his right path, and understood, as Voltaire said of Condorcet, that discoveries of permanent value could make him no less illustrious than military glory.

"Dissatisfied with the botanical systems of his time, in six months he wrote his 'Flore francaise,' preceded by the 'Cle dichotomique,' with the help of which it is easy even for a beginner to arrive with certainty at the name of the plant before him." Of this work, M. Martins tells us in a note, that the second edition, published by Candolle in 1815, is still the standard work on French plants.

"In 1778 Rousseau had brought botany into vogue. Women and men of fashion took to it. Buffon had the three volumes of 'Flore francaise' printed at the royal press, and in the following year Lamarck entered the Academy of Sciences. Buffon being anxious that his son should travel, gave him Lamarck for his companion and tutor. He thus made a trip through Holland, Germany, and Hungary, and became acquainted with Gleditsch at Berlin, with Jacquin at Vienna, and with Murray at Gottingen.

"The 'Encyclopedie methodique,' begun by Diderot and D'Alembert, was not yet completed. For this work Lamarck wrote four volumes, describing all the then known plants whose names began with the letters from A to P. This great work was completed by Poiret, and comprises twelve volumes, which appeared between the years 1783 and 1817. A still more important work, also part of the Encyclopedia, and continually quoted by botanists, is the 'Illustration des Genres.' In this work Lamarck describes two thousand genera, and illustrates them, according to the title-page, with nine hundred engravings. Only a botanist can form any idea of the research in collections, gardens, and books, which such a work must have involved. But Lamarck's activity was inexhaustible. Sonnerat returned from India in 1781 with a very large number of dried plants; no one except Lamarck thought it worth while to inspect them, and Sonnerat, charmed with his enthusiasm, gave him the whole magnificent collection.

"In spite, however, of his incessant toil, Lamarck's position continued to be most precarious. He lived by his pen, as a publisher's hack, and it was with difficulty that he obtained even the poorly paid post of keeper of the king's cabinet of dried plants. Like most other naturalists he had thus to contend with incessant difficulties during a period of fifteen years.

"At length fortune bettered his condition while changing the direction of his labours. France was now under the Convention; what Carnot had done for the army Lakanal undertook to do for the natural sciences. At his suggestion a museum of natural history was established. Professors had been found for all the chairs save that of Zoology; but in that time of enthusiasm, so different from the present, France could find men of war and men of science wherever and whenever she had need of them. Etienne Geoffroy St. Hilaire was twenty-one years old, and was engaged in the study of mineralogy under Hauey. Daubenton said to him, 'I will undertake the responsibility for your inexperience. I have a father's authority over you. Take this professorship, and let us one day say that you have made zoology a French science.' Geoffroy accepted, and undertook the higher animals. Lakanal knew that a single professor could not suffice for the task of arranging the collections of the entire animal kingdom, and as Geoffroy was to class the vertebrate animals only, there remained the invertebrata—that is to say, insects, molluscs, worms, zoophytes—in a word, what was then the chaos of the unknown. 'Lamarck,' says M. Michelet, 'accepted the unknown.' He had devoted some attention to the study of shells with Bruguieres, but he had still everything to learn, or I should perhaps say rather, everything to create in that unexplored territory into which Linnaeus had declined to enter, and into which he had thus introduced none of the order he had so well known how to establish among the higher animals.

"Lamarck began his course of lectures at the museum in 1794, after a year's preparation, and at once established that great division of animals into vertebrate and invertebrate, which science has ever since recognized.

"Dividing the vertebrate animals—as Linnaeus had already divided them—into mammals, birds, reptiles, and fishes, he divided the invertebrates into molluscs, insects, worms, echinoderms, and polyps. In 1799 he separated the crustacea from the insects, with which they had been classed hitherto; in 1800 he established the arachnids as a class distinct from the insects; in 1802 that of the annelids, a subdivision of the worms, and that of the radiata as distinct from the polyps. Time has approved the wisdom of these divisions, founded all of them upon the organic type of the creatures themselves—that is to say, upon the rational method introduced into zoology by Cuvier, Lamarck, and Geoffroy St. Hilaire.

"This introduction being devoted only to Lamarck's labours as a naturalist, we will pass over certain works in which he treats of physics and chemistry. These attempts—errors of a powerful mind which thought itself able by the help of pure reason to establish truths which rest only upon experience—attempts, moreover, which were some of them but resuscitations of exploded theories, such as that of 'phlogistic'—had not even the honour of being refuted: they did not deserve to be so, and should be a warning to all those who would write upon a subject without the necessary practical knowledge.

. . . . . .

"At the beginning of this century there was not yet any such science as geology. People observed but little, and in lieu of observation made theories to embrace the entire globe. Lamarck made his in 1802, and twenty-three years later the judicious Cuvier still yielded to the prevailing custom in publishing his 'Discoveries on the Earth's Revolutions.'

"Lamarck's merit was to have discovered that there had been no catastrophes, but that the gradual action of forces during thousands of ages accounted for the changes observable upon the face of the earth, better than any sudden and violent perturbations. 'Nature,' he writes, 'has no difficulty on the score of time; she has it always at command; it is with her a boundless space in which she has room for the greatest as for the smallest operations.'"

Here we must not forget Buffon's fine passage, "Nature's great workman is Time," &c. See page 103.

"Lamarck," continues M. Martins, "was the first to distinguish littoral from ocean fossils, but no one accepts his theory that oceans make their beds deeper owing to the action of the tides, and distribute themselves differently over the earth's surface without any change of level of the different parts of that surface.

. . . . . .

"Settling down to a single branch of science, in consequence of his professorship, Lamarck now devoted himself to the twofold labour of lecturing and classifying the collections at the museum. In 1802 he published his 'Considerations on the Organization of Living Bodies'; in 1809 his 'Philosophie Zoologique,' a development of the 'Considerations'; and from 1816 to 1822 his Natural History of the invertebrate animals, in seven volumes. This is his great work, and, being entirely a work of description and classification, was received with the unanimous approbation of the scientific world. His 'Fossil Shells of the Neighbourhood of Paris'—a work in which his profound knowledge of existing shells enabled him to class with certainty the remains of forms that had disappeared thousands of ages ago—met also with a favourable reception.

"Lamarck was fifty years old before he began to study zoology; and prolonged microscopic examinations first fatigued and at length enfeebled his eyesight. The clouds which obscured it gradually thickened, and he became quite blind. Married four times, the father of seven children, he saw his small patrimony and even his earlier savings swallowed up by one of those hazardous investments with which promoters impose on the credulity of the public. His small endowment as professor alone protected him from destitution. Men of science whom his reputation as a botanist and zoologist had attracted near him, wondered at the manner in which he was neglected.

. . . . . .

"He passed the last ten years of his laborious life in darkness, tended only by the affectionate care of his two daughters. The eldest wrote from his dictation part of the sixth and seventh volumes of his work on the invertebrate animals. From the time her father became confined to his room his daughter never left the house; and when first she did so after his death, she was distressed by the fresh air to which she had been so long a stranger.

"Lamarck died December 18, 1829, at the age of eighty-five. Latreille and Blainville were his successors at the museum. The incredible activity of the first professor had so greatly increased the number of the known invertebrata that it was found necessary to endow two professors, where one had originally been sufficient.

"His two daughters were left penniless. In the year 1832 I myself saw Mlle. Cornelie de Lamarck earning a scanty pittance by fastening dried plants on to paper, in the museum of which her father had been a professor. Many a species named and described by him must have passed under her eyes and increased the bitterness of her regret."[185]


[184] Paris, 1873.

[185] Introduction Biographique to M. Martins' edition of the 'Phil. Zool.,' pp. ix-xx.



"If Cuvier," says M. Isidore Geoffroy St. Hilaire,[186] "is the modern successor of Linnaeus, so is Lamarck of Buffon. But Cuvier does not go so far as Linnaeus, and Lamarck goes much farther than Buffon. Lamarck, moreover, took his own line, and his conjectures are not only much bolder, or rather more hazardous, but they are profoundly different from Buffon's.

"It is well known that the vast labours of Lamarck were divided between botany and physical science in the eighteenth century, and between zoology and natural philosophy in the nineteenth; it is, however, less generally known that Lamarck was long a partisan of the immutability of species. It was not till 1801, when he was already old, that he freed himself from the ideas then generally prevailing. But Lamarck, having once made up his mind, never changed it; in his ripe age he exhibits all the ardour of youth in propagating and defending his new convictions.

"In the three years, 1801, 1802, 1803, he enounced them twice in his lectures, and three times in his writings.[187] He returns to the subject and states his views precisely in 1806,[188] and in 1809 he devotes a great part of his principal work, the 'Philosophie Zoologique,' to their demonstration.[189] Here he might have rested and have quietly awaited the judgment of his peers; but he is too much convinced; he believes the future of science to depend so much upon his doctrine that to his dying day he feels compelled to explain it further and insist upon it. When already over seventy years of age he enounces it again, and maintains it as firmly as ever in 1815, in his 'Histoire des Animaux sans Vertebres,' and in 1820 in his 'Systeme des Connaissances Positives.'[190]

"This doctrine, so dearly cherished by its author, and the conception, exposition, and defence of which so laboriously occupied the second half of his scientific career, has been assuredly too much admired by some, who have forgotten that Lamarck had a precursor, and that that precursor was Buffon. It has, on the other hand, been too severely condemned by others who have involved it in its entirety in broad and sweeping condemnation. As if it were possible that so great labour on the part of so great a naturalist should have led him to 'a fantastic conclusion' only—to a 'flighty error,' and, as has been often said, though not written, to 'one absurdity the more.' Such was the language which Lamarck heard during his protracted old age, saddened alike by the weight of years and blindness; this was what people did not hesitate to utter over his grave yet barely closed, and what, indeed, they are still saying—commonly, too, without any knowledge of what Lamarck maintained, but merely repeating at second hand bad caricatures of his teaching.

Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse