HotFreeBooks.com
Edison, His Life and Inventions
by Frank Lewis Dyer and Thomas Commerford Martin
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17     Next Part
Home - Random Browse

[Footnote 16: For a proper understanding and full appreciation of the importance of fine grinding, it may be explained that Portland cement (as manufactured in the Lehigh Valley) is made from what is commonly spoken of as "cement rock," with the addition of sufficient limestone to give the necessary amount of lime. The rock is broken down and then ground to a fineness of 80 to 90 per cent. through a 200-mesh screen. This ground material passes through kilns and comes out in "clinker." This is ground and that part of this finely ground clinker that will pass a 200-mesh screen is cement; the residue is still clinker. These coarse particles, or clinkers, absorb water very slowly, are practically inert, and have very feeble cementing properties. The residue on a 200-mesh screen is useless.]

If Edison measured his happiness, as men often do, by merely commercial or pecuniary rewards of success, it would seem almost redundant to state that he has continued to manifest an intense interest in the cement plant. Ordinarily, his interest as an inventor wanes in proportion to the approach to mere commercialism—in other words, the keenness of his pleasure is in overcoming difficulties rather than the mere piling up of a bank account. He is entirely sensible of the advantages arising from a good balance at the banker's, but that has not been the goal of his ambition. Hence, although his cement enterprise reached the commercial stage a long time ago, he has been firmly convinced of his own ability to devise still further improvements and economical processes of greater or less fundamental importance, and has, therefore, made a constant study of the problem as a whole and in all its parts. By means of frequent reports, aided by his remarkable memory, he keeps in as close touch with the plant as if he were there in person every day, and is thus enabled to suggest improvement in any particular detail. The engineering force has a great respect for the accuracy of his knowledge of every part of the plant, for he remembers the dimensions and details of each item of machinery, sometimes to the discomfiture of those who are around it every day.

A noteworthy instance of Edison's memory occurred in connection with this cement plant. Some years ago, as its installation was nearing completion, he went up to look it over and satisfy himself as to what needed to be done. On the arrival of the train at 10.40 in the morning, he went to the mill, and, with Mr. Mason, the general superintendent, started at the crusher at one end, and examined every detail all the way through to the packing-house at the other end. He made neither notes nor memoranda, but the examination required all the day, which happened to be a Saturday. He took a train for home at 5.30 in the afternoon, and on arriving at his residence at Orange, got out some note-books and began to write entirely from memory each item consecutively. He continued at this task all through Saturday night, and worked steadily on until Sunday afternoon, when he completed a list of nearly six hundred items. The nature of this feat is more appreciable from the fact that a large number of changes included all the figures of new dimensions he had decided upon for some of the machinery throughout the plant.

As the reader may have a natural curiosity to learn whether or not the list so made was practical, it may be stated that it was copied and sent up to the general superintendent with instructions to make the modifications suggested, and report by numbers as they were attended to. This was faithfully done, all the changes being made before the plant was put into operation. Subsequent experience has amply proven the value of Edison's prescience at this time.

Although Edison's achievements in the way of improved processes and machinery have already made a deep impression in the cement industry, it is probable that this impression will become still more profoundly stamped upon it in the near future with the exploitation of his "Poured Cement House." The broad problem which he set himself was to provide handsome and practically indestructible detached houses, which could be taken by wage-earners at very moderate monthly rentals. He turned this question over in his mind for several years, and arrived at the conclusion that a house cast in one piece would be the answer. To produce such a house involved the overcoming of many engineering and other technical difficulties. These he attacked vigorously and disposed of patiently one by one.

In this connection a short anecdote may be quoted from Edison as indicative of one of the influences turning his thoughts in this direction. In the story of the ore-milling work, it has been noted that the plant was shut down owing to the competition of the cheap ore from the Mesaba Range. Edison says: "When I shut down, the insurance companies cancelled my insurance. I asked the reason why. 'Oh,' they said, 'this thing is a failure. The moral risk is too great.' 'All right; I am glad to hear it. I will now construct buildings that won't have any moral risk.' I determined to go into the Portland cement business. I organized a company and started cement-works which have now been running successfully for several years. I had so perfected the machinery in trying to get my ore costs down that the making of cheap cement was an easy matter to me. I built these works entirely of concrete and steel, so that there is not a wagon-load of lumber in them; and so that the insurance companies would not have any possibility of having any 'moral risk.' Since that time I have put up numerous factory buildings all of steel and concrete, without any combustible whatever about them—to avoid this 'moral risk.' I am carrying further the application of this idea in building private houses for poor people, in which there will be no 'moral risk' at all—nothing whatever to burn, not even by lightning."

As a casting necessitates a mold, together with a mixture sufficiently fluid in its nature to fill all the interstices completely, Edison devoted much attention to an extensive series of experiments for producing a free-flowing combination of necessary materials. His proposition was against all precedent. All expert testimony pointed to the fact that a mixture of concrete (cement, sand, crushed stone, and water) could not be made to flow freely to the smallest parts of an intricate set of molds; that the heavy parts of the mixture could not be held in suspension, but would separate out by gravity and make an unevenly balanced structure; that the surface would be full of imperfections, etc.

Undeterred by the unanimity of adverse opinions, however, he pursued his investigations with the thorough minuteness that characterizes all his laboratory work, and in due time produced a mixture which on elaborate test overcame all objections and answered the complex requirements perfectly, including the making of a surface smooth, even, and entirely waterproof. All the other engineering problems have received study in like manner, and have been overcome, until at the present writing the whole question is practically solved and has been reduced to actual practice. The Edison poured or cast cement house may be reckoned as a reality.

The general scheme, briefly outlined, is to prepare a model and plans of the house to be cast, and then to design a set of molds in sections of convenient size. When all is ready, these molds, which are of cast iron with smooth interior surfaces, are taken to the place where the house is to be erected. Here there has been provided a solid concrete cellar floor, technically called "footing." The molds are then locked together so that they rest on this footing. Hundreds of pieces are necessary for the complete set. When they have been completely assembled, there will be a hollow space in the interior, representing the shape of the house. Reinforcing rods are also placed in the molds, to be left behind in the finished house.

Next comes the pouring of the concrete mixture into this form. Large mechanical mixers are used, and, as it is made, the mixture is dumped into tanks, from which it is conveyed to a distributing tank on the top, or roof, of the form. From this tank a large number of open troughs or pipes lead the mixture to various openings in the roof, whence it flows down and fills all parts of the mold from the footing in the basement until it overflows at the tip of the roof.

The pouring of the entire house is accomplished in about six hours, and then the molds are left undisturbed for six days, in order that the concrete may set and harden. After that time the work of taking away the molds is begun. This requires three or four days. When the molds are taken away an entire house is disclosed, cast in one piece, from cellar to tip of roof, complete with floors, interior walls, stairways, bath and laundry tubs, electric-wire conduits, gas, water, and heating pipes. No plaster is used anywhere; but the exterior and interior walls are smooth and may be painted or tinted, if desired. All that is now necessary is to put in the windows, doors, heater, and lighting fixtures, and to connect up the plumbing and heating arrangements, thus making the house ready for occupancy.

As these iron molds are not ephemeral like the wooden framing now used in cement construction, but of practically illimitable life, it is obvious that they can be used a great number of times. A complete set of molds will cost approximately $25,000, while the necessary plant will cost about $15,000 more. It is proposed to work as a unit plant for successful operation at least six sets of molds, to keep the men busy and the machinery going. Any one, with a sheet of paper, can ascertain the yearly interest on the investment as a fixed charge to be assessed against each house, on the basis that one hundred and forty-four houses can be built in a year with the battery of six sets of molds. Putting the sum at $175,000, and the interest at 6 per cent. on the cost of the molds and 4 per cent. for breakage, together with 6 per cent. interest and 15 per cent. depreciation on machinery, the plant charge is approximately $140 per house. It does not require a particularly acute prophetic vision to see "Flower Towns" of "Poured Houses" going up in whole suburbs outside all our chief centres of population.

Edison's conception of the workingman's ideal house has been a broad one from the very start. He was not content merely to provide a roomy, moderately priced house that should be fireproof, waterproof, and vermin-proof, and practically indestructible, but has been solicitous to get away from the idea of a plain "packing-box" type. He has also provided for ornamentation of a high class in designing the details of the structure. As he expressed it: "We will give the workingman and his family ornamentation in their house. They deserve it, and besides, it costs no more after the pattern is made to give decorative effects than it would to make everything plain." The plans have provided for a type of house that would cost not far from $30,000 if built of cut stone. He gave to Messrs. Mann & McNaillie, architects, New York, his idea of the type of house he wanted. On receiving these plans he changed them considerably, and built a model. After making many more changes in this while in the pattern shop, he produced a house satisfactory to himself.

This one-family house has a floor plan twenty-five by thirty feet, and is three stories high. The first floor is divided off into two large rooms—parlor and living-room—and the upper floors contain four large bedrooms, a roomy bath-room, and wide halls. The front porch extends eight feet, and the back porch three feet. A cellar seven and a half feet high extends under the whole house, and will contain the boiler, wash-tubs, and coal-bunker. It is intended that the house shall be built on lots forty by sixty feet, giving a lawn and a small garden.

It is contemplated that these houses shall be built in industrial communities, where they can be put up in groups of several hundred. If erected in this manner, and by an operator buying his materials in large quantities, Edison believes that these houses can be erected complete, including heating apparatus and plumbing, for $1200 each. This figure would also rest on the basis of using in the mixture the gravel excavated on the site. Comment has been made by persons of artistic taste on the monotony of a cluster of houses exactly alike in appearance, but this criticism has been anticipated, and the molds are so made as to be capable of permutations of arrangement. Thus it will be possible to introduce almost endless changes in the style of house by variation of the same set of molds.

For more than forty years Edison was avowedly an inventor for purely commercial purposes; but within the last two years he decided to retire from that field so far as new inventions were concerned, and to devote himself to scientific research and experiment in the leisure hours that might remain after continuing to improve his existing devices. But although the poured cement house was planned during the commercial period, the spirit in which it was conceived arose out of an earnest desire to place within the reach of the wage-earner an opportunity to better his physical, pecuniary, and mental conditions in so far as that could be done through the medium of hygienic and beautiful homes at moderate rentals. From the first Edison has declared that it was not his intention to benefit pecuniarily through the exploitation of this project. Having actually demonstrated the practicability and feasibility of his plans, he will allow responsible concerns to carry them into practice under such limitations as may be necessary to sustain the basic object, but without any payment to him except for the actual expense incurred. The hypercritical may cavil and say that, as a manufacturer of cement, Edison will be benefited. True, but as ANY good Portland cement can be used, and no restrictions as to source of supply are enforced, he, or rather his company, will be merely one of many possible purveyors.

This invention is practically a gift to the workingmen of the world and their families. The net result will be that those who care to avail themselves of the privilege may, sooner or later, forsake the crowded apartment or tenement and be comfortably housed in sanitary, substantial, and roomy homes fitted with modern conveniences, and beautified by artistic decorations, with no outlay for insurance or repairs; no dread of fire, and all at a rental which Edison believes will be not more, but probably less than, $10 per month in any city of the United States. While his achievement in its present status will bring about substantial and immediate benefits to wage-earners, his thoughts have already travelled some years ahead in the formulation of a still further beneficial project looking toward the individual ownership of these houses on a basis startling in its practical possibilities.



CHAPTER XXI

MOTION PICTURES

THE preceding chapters have treated of Edison in various aspects as an inventor, some of which are familiar to the public, others of which are believed to be in the nature of a novel revelation, simply because no one had taken the trouble before to put the facts together. To those who have perhaps grown weary of seeing Edison's name in articles of a sensational character, it may sound strange to say that, after all, justice has not been done to his versatile and many-sided nature; and that the mere prosaic facts of his actual achievement outrun the wildest flights of irrelevant journalistic imagination. Edison hates nothing more than to be dubbed a genius or played up as a "wizard"; but this fate has dogged him until he has come at last to resign himself to it with a resentful indignation only to be appreciated when watching him read the latest full-page Sunday "spread" that develops a casual conversation into oracular verbosity, and gives to his shrewd surmise the cast of inspired prophecy.

In other words, Edison's real work has seldom been seriously discussed. Rather has it been taken as a point of departure into a realm of fancy and romance, where as a relief from drudgery he is sometimes quite willing to play the pipe if some one will dance to it. Indeed, the stories woven around his casual suggestions are tame and vapid alongside his own essays in fiction, probably never to be published, but which show what a real inventor can do when he cuts loose to create a new heaven and a new earth, unrestrained by any formal respect for existing conditions of servitude to three dimensions and the standard elements.

The present chapter, essentially technical in its subject-matter, is perhaps as significant as any in this biography, because it presents Edison as the Master Impresario of his age, and maybe of many following ages also. His phonographs and his motion pictures have more audiences in a week than all the theatres in America in a year. The "Nickelodeon" is the central fact in modern amusement, and Edison founded it. All that millions know of music and drama he furnishes; and the whole study of the theatrical managers thus reaching the masses is not to ascertain the limitations of the new art, but to discover its boundless possibilities. None of the exuberant versions of things Edison has not done could endure for a moment with the simple narrative of what he has really done as the world's new Purveyor of Pleasure. And yet it all depends on the toilful conquest of a subtle and intricate art. The story of the invention of the phonograph has been told. That of the evolution of motion pictures follows. It is all one piece of sober, careful analysis, and stubborn, successful attack on the problem.

The possibility of making a record of animate movement, and subsequently reproducing it, was predicted long before the actual accomplishment. This, as we have seen, was also the case with the phonograph, the telephone, and the electric light. As to the phonograph, the prediction went only so far as the RESULT; the apparent intricacy of the problem being so great that the MEANS for accomplishing the desired end were seemingly beyond the grasp of the imagination or the mastery of invention.

With the electric light and the telephone the prediction included not only the result to be accomplished, but, in a rough and general way, the mechanism itself; that is to say, long before a single sound was intelligibly transmitted it was recognized that such a thing might be done by causing a diaphragm, vibrated by original sounds, to communicate its movements to a distant diaphragm by a suitably controlled electric current. In the case of the electric light, the heating of a conductor to incandescence in a highly rarefied atmosphere was suggested as a scheme of illumination long before its actual accomplishment, and in fact before the production of a suitable generator for delivering electric current in a satisfactory and economical manner.

It is a curious fact that while the modern art of motion pictures depends essentially on the development of instantaneous photography, the suggestion of the possibility of securing a reproduction of animate motion, as well as, in a general way, of the mechanism for accomplishing the result, was made many years before the instantaneous photograph became possible. While the first motion picture was not actually produced until the summer of 1889, its real birth was almost a century earlier, when Plateau, in France, constructed an optical toy, to which the impressive name of "Phenakistoscope" was applied, for producing an illusion of motion. This toy in turn was the forerunner of the Zoetrope, or so-called "Wheel of Life," which was introduced into this country about the year 1845. These devices were essentially toys, depending for their successful operation (as is the case with motion pictures) upon a physiological phenomenon known as persistence of vision. If, for instance, a bright light is moved rapidly in front of the eye in a dark room, it appears not as an illuminated spark, but as a line of fire; a so-called shooting star, or a flash of lightning produces the same effect. This result is purely physiological, and is due to the fact that the retina of the eye may be considered as practically a sensitized plate of relatively slow speed, and an image impressed upon it remains, before being effaced, for a period of from one-tenth to one-seventh of a second, varying according to the idiosyncrasies of the individual and the intensity of the light. When, therefore, it is said that we should only believe things we actually see, we ought to remember that in almost every instance we never see things as they are.

Bearing in mind the fact that when an image is impressed on the human retina it persists for an appreciable period, varying as stated, with the individual, and depending also upon the intensity of the illumination, it will be seen that, if a number of pictures or photographs are successively presented to the eye, they will appear as a single, continuous photograph, provided the periods between them are short enough to prevent one of the photographs from being effaced before its successor is presented. If, for instance, a series of identical portraits were rapidly presented to the eye, a single picture would apparently be viewed, or if we presented to the eye the series of photographs of a moving object, each one representing a minute successive phase of the movement, the movements themselves would apparently again take place.

With the Zoetrope and similar toys rough drawings were used for depicting a few broadly outlined successive phases of movement, because in their day instantaneous photography was unknown, and in addition there were certain crudities of construction that seriously interfered with the illumination of the pictures, rendering it necessary to make them practically as silhouettes on a very conspicuous background. Hence it will be obvious that these toys produced merely an ILLUSION of THEORETICAL motion.

But with the knowledge of even an illusion of motion, and with the philosophy of persistence of vision fully understood, it would seem that, upon the development of instantaneous photography, the reproduction of ACTUAL motion by means of pictures would have followed, almost as a necessary consequence. Yet such was not the case, and success was ultimately accomplished by Edison only after persistent experimenting along lines that could not have been predicted, including the construction of apparatus for the purpose, which, if it had not been made, would undoubtedly be considered impossible. In fact, if it were not for Edison's peculiar mentality, that refuses to recognize anything as impossible until indubitably demonstrated to be so, the production of motion pictures would certainly have been delayed for years, if not for all time.

One of the earliest suggestions of the possibility of utilizing photography for exhibiting the illusion of actual movement was made by Ducos, who, as early as 1864, obtained a patent in France, in which he said: "My invention consists in substituting rapidly and without confusion to the eye not only of an individual, but when so desired of a whole assemblage, the enlarged images of a great number of pictures when taken instantaneously and successively at very short intervals.... The observer will believe that he sees only one image, which changes gradually by reason of the successive changes of form and position of the objects which occur from one picture to the other. Even supposing that there be a slight interval of time during which the same object was not shown, the persistence of the luminous impression upon the eye will fill this gap. There will be as it were a living representation of nature and . . . the same scene will be reproduced upon the screen with the same degree of animation.... By means of my apparatus I am enabled especially to reproduce the passing of a procession, a review of military manoeuvres, the movements of a battle, a public fete, a theatrical scene, the evolution or the dances of one or of several persons, the changing expression of countenance, or, if one desires, the grimaces of a human face; a marine view, the motion of waves, the passage of clouds in a stormy sky, particularly in a mountainous country, the eruption of a volcano," etc.

Other dreamers, contemporaries of Ducos, made similar suggestions; they recognized the scientific possibility of the problem, but they were irretrievably handicapped by the shortcomings of photography. Even when substantially instantaneous photographs were evolved at a somewhat later date they were limited to the use of wet plates, which have to be prepared by the photographer and used immediately, and were therefore quite out of the question for any practical commercial scheme. Besides this, the use of plates would have been impracticable, because the limitations of their weight and size would have prevented the taking of a large number of pictures at a high rate of speed, even if the sensitized surface had been sufficiently rapid.

Nothing ever came of Ducos' suggestions and those of the early dreamers in this essentially practical and commercial art, and their ideas have made no greater impress upon the final result than Jules Verne's Nautilus of our boyhood days has developed the modern submarine. From time to time further suggestions were made, some in patents, and others in photographic and scientific publications, all dealing with the fascinating thought of preserving and representing actual scenes and events. The first serious attempt to secure an illusion of motion by photography was made in 1878 by Edward Muybridge as a result of a wager with the late Senator Leland Stanford, the California pioneer and horse-lover, who had asserted, contrary to the usual belief, that a trotting-horse at one point in its gait left the ground entirely. At this time wet plates of very great rapidity were known, and by arranging a series of cameras along the line of a track and causing the horse in trotting past them, by striking wires or strings attached to the shutters, to actuate the cameras at the right instant, a series of very clear instantaneous photographs was obtained. From these negatives, when developed, positive prints were made, which were later mounted on a modified form of Zoetrope and projected upon a screen.

One of these early exhibitions is described in the Scientific American of June 5, 1880: "While the separate photographs had shown the successive positions of a trotting or running horse in making a single stride, the Zoogyroscope threw upon the screen apparently the living animal. Nothing was wanting but the clatter of hoofs upon the turf, and an occasional breath of steam from the nostrils, to make the spectator believe that he had before him genuine flesh-and-blood steeds. In the views of hurdle-leaping, the simulation was still more admirable, even to the motion of the tail as the animal gathered for the jump, the raising of his head, all were there. Views of an ox trotting, a wild bull on the charge, greyhounds and deer running and birds flying in mid-air were shown, also athletes in various positions." It must not be assumed from this statement that even as late as the work of Muybridge anything like a true illusion of movement had been obtained, because such was not the case. Muybridge secured only one cycle of movement, because a separate camera had to be used for each photograph and consequently each cycle was reproduced over and over again. To have made photographs of a trotting-horse for one minute at the moderate rate of twelve per second would have required, under the Muybridge scheme, seven hundred and twenty separate cameras, whereas with the modern art only a single camera is used. A further defect with the Muybridge pictures was that since each photograph was secured when the moving object was in the centre of the plate, the reproduction showed the object always centrally on the screen with its arms or legs in violent movement, but not making any progress, and with the scenery rushing wildly across the field of view!

In the early 80's the dry plate was first introduced into general use, and from that time onward its rapidity and quality were gradually improved; so much so that after 1882 Prof. E. J. Marey, of the French Academy, who in 1874 had published a well-known treatise on "Animal Movement," was able by the use of dry plates to carry forward the experiments of Muybridge on a greatly refined scale. Marey was, however, handicapped by reason of the fact that glass plates were still used, although he was able with a single camera to obtain twelve photographs on successive plates in the space of one second. Marey, like Muybridge, photographed only one cycle of the movements of a single object, which was subsequently reproduced over and over again, and the camera was in the form of a gun, which could follow the object so that the successive pictures would be always located in the centre of the plates.

The review above given, as briefly as possible, comprises substantially the sum of the world's knowledge at the time the problem of recording and reproducing animate movement was first undertaken by Edison. The most that could be said of the condition of the art when Edison entered the field was that it had been recognized that if a series of instantaneous photographs of a moving object could be secured at an enormously high rate many times per second—they might be passed before the eye either directly or by projection upon a screen, and thereby result in a reproduction of the movements. Two very serious difficulties lay in the way of actual accomplishment, however—first, the production of a sensitive surface in such form and weight as to be capable of being successively brought into position and exposed, at the necessarily high rate; and, second, the production of a camera capable of so taking the pictures. There were numerous other workers in the field, but they added nothing to what had already been proposed. Edison himself knew nothing of Ducos, or that the suggestions had advanced beyond the single centrally located photographs of Muybridge and Marey. As a matter of public policy, the law presumes that an inventor must be familiar with all that has gone before in the field within which he is working, and if a suggestion is limited to a patent granted in New South Wales, or is described in a single publication in Brazil, an inventor in America, engaged in the same field of thought, is by legal fiction presumed to have knowledge not only of the existence of that patent or publication, but of its contents. We say this not in the way of an apology for the extent of Edison's contribution to the motion-picture art, because there can be no question that he was as much the creator of that art as he was of the phonographic art; but to show that in a practical sense the suggestion of the art itself was original with him. He himself says: "In the year 1887 the idea occurred to me that it was possible to devise an instrument which should do for the eye what the phonograph does for the ear, and that by a combination of the two, all motion and sound could be recorded and reproduced simultaneously. This idea, the germ of which came from the little toy called the Zoetrope and the work of Muybridge, Marey, and others, has now been accomplished, so that every change of facial expression can be recorded and reproduced life-size. The kinetoscope is only a small model illustrating the present stage of the progress, but with each succeeding month new possibilities are brought into view. I believe that in coming years, by my own work and that of Dickson, Muybridge, Marey, and others who will doubtless enter the field, grand opera can be given at the Metropolitan Opera House at New York without any material change from the original, and with artists and musicians long since dead."

In the earliest experiments attempts were made to secure the photographs, reduced microscopically, arranged spirally on a cylinder about the size of a phonograph record, and coated with a highly sensitized surface, the cylinder being given an intermittent movement, so as to be at rest during each exposure. Reproductions were obtained in the same way, positive prints being observed through a magnifying glass. Various forms of apparatus following this general type were made, but they were all open to the serious objection that the very rapid emulsions employed were relatively coarse-grained and prevented the securing of sharp pictures of microscopic size. On the other hand, the enlarging of the apparatus to permit larger pictures to be obtained would present too much weight to be stopped and started with the requisite rapidity. In these early experiments, however, it was recognized that, to secure proper results, a single camera should be used, so that the objects might move across its field just as they move across the field of the human eye; and the important fact was also observed that the rate at which persistence of vision took place represented the minimum speed at which the pictures should be obtained. If, for instance, five pictures per second were taken (half of the time being occupied in exposure and the other half in moving the exposed portion of the film out of the field of the lens and bringing a new portion into its place), and the same ratio is observed in exhibiting the pictures, the interval of time between successive pictures would be one-tenth of a second; and for a normal eye such an exhibition would present a substantially continuous photograph. If the angular movement of the object across the field is very slow, as, for instance, a distant vessel, the successive positions of the object are so nearly coincident that when reproduced before the eye an impression of smooth, continuous movement is secured. If, however, the object is moving rapidly across the field of view, one picture will be separated from its successor to a marked extent, and the resulting impression will be jerky and unnatural. Recognizing this fact, Edison always sought for a very high speed, so as to give smooth and natural reproductions, and even with his experimental apparatus obtained upward of forty-eight pictures per second, whereas, in practice, at the present time, the accepted rate varies between twenty and thirty per second. In the efforts of the present day to economize space by using a minimum length of film, pictures are frequently taken at too slow a rate, and the reproductions are therefore often objectionable, by reason of more or less jerkiness.

During the experimental period and up to the early part of 1889, the kodak film was being slowly developed by the Eastman Kodak Company. Edison perceived in this product the solution of the problem on which he had been working, because the film presented a very light body of tough material on which relatively large photographs could be taken at rapid intervals. The surface, however, was not at first sufficiently sensitive to admit of sharply defined pictures being secured at the necessarily high rates. It seemed apparent, therefore, that in order to obtain the desired speed there would have to be sacrificed that fineness of emulsion necessary for the securing of sharp pictures. But as was subsequently seen, this sacrifice was in time rendered unnecessary. Much credit is due the Eastman experts—stimulated and encouraged by Edison, but independently of him—for the production at last of a highly sensitized, fine-grained emulsion presenting the highly sensitized surface that Edison sought.

Having at last obtained apparently the proper material upon which to secure the photographs, the problem then remained to devise an apparatus by means of which from twenty to forty pictures per second could be taken; the film being stationary during the exposure and, upon the closing of the shutter, being moved to present a fresh surface. In connection with this problem it is interesting to note that this question of high speed was apparently regarded by all Edison's predecessors as the crucial point. Ducos, for example, expended a great deal of useless ingenuity in devising a camera by means of which a tape-line film could receive the photographs while being in continuous movement, necessitating the use of a series of moving lenses. Another experimenter, Dumont, made use of a single large plate and a great number of lenses which were successively exposed. Muybridge, as we have seen, used a series of cameras, one for each plate. Marey was limited to a very few photographs, because the entire surface had to be stopped and started in connection with each exposure.

After the accomplishment of the fact, it would seem to be the obvious thing to use a single lens and move the sensitized film with respect to it, intermittently bringing the surface to rest, then exposing it, then cutting off the light and moving the surface to a fresh position; but who, other than Edison, would assume that such a device could be made to repeat these movements over and over again at the rate of twenty to forty per second? Users of kodaks and other forms of film cameras will appreciate perhaps better than others the difficulties of the problem, because in their work, after an exposure, they have to advance the film forward painfully to the extent of the next picture before another exposure can take place, these operations permitting of speeds of but a few pictures per minute at best. Edison's solution of the problem involved the production of a kodak in which from twenty to forty pictures should be taken IN EACH SECOND, and with such fineness of adjustment that each should exactly coincide with its predecessors even when subjected to the test of enlargement by projection. This, however, was finally accomplished, and in the summer of 1889 the first modern motion-picture camera was made. More than this, the mechanism for operating the film was so constructed that the movement of the film took place in one-tenth of the time required for the exposure, giving the film an opportunity to come to rest prior to the opening of the shutter. From that day to this the Edison camera has been the accepted standard for securing pictures of objects in motion, and such changes as have been made in it have been purely in the nature of detail mechanical refinements.

The earliest form of exhibiting apparatus, known as the Kinetoscope, was a machine in which a positive print from the negative obtained in the camera was exhibited directly to the eye through a peep-hole; but in 1895 the films were applied to modified forms of magic lanterns, by which the images are projected upon a screen. Since that date the industry has developed very rapidly, and at the present time (1910) all of the principal American manufacturers of motion pictures are paying a royalty to Edison under his basic patents.

From the early days of pictures representing simple movements, such as a man sneezing, or a skirt-dance, there has been a gradual evolution, until now the pictures represent not only actual events in all their palpitating instantaneity, but highly developed dramas and scenarios enacted in large, well-equipped glass studios, and the result of infinite pains and expense of production. These pictures are exhibited in upward of eight thousand places of amusement in the United States, and are witnessed by millions of people each year. They constitute a cheap, clean form of amusement for many persons who cannot spare the money to go to the ordinary theatres, or they may be exhibited in towns that are too small to support a theatre. More than this, they offer to the poor man an effective substitute for the saloon. Probably no invention ever made has afforded more pleasure and entertainment than the motion picture.

Aside from the development of the motion picture as a spectacle, there has gone on an evolution in its use for educational purposes of wide range, which must not be overlooked. In fact, this form of utilization has been carried further in Europe than in this country as a means of demonstration in the arts and sciences. One may study animal life, watch a surgical operation, follow the movement of machinery, take lessons in facial expression or in calisthenics. It seems a pity that in motion pictures should at last have been found the only competition that the ancient marionettes cannot withstand. But aside from the disappearance of those entertaining puppets, all else is gain in the creation of this new art.

The work at the Edison laboratory in the development of the motion picture was as usual intense and concentrated, and, as might be expected, many of the early experiments were quite primitive in their character until command had been secured of relatively perfect apparatus. The subjects registered jerkily by the films were crude and amusing, such as of Fred Ott's sneeze, Carmencita dancing, Italians and their performing bears, fencing, trapeze stunts, horsemanship, blacksmithing—just simple movements without any attempt to portray the silent drama. One curious incident of this early study occurred when "Jim" Corbett was asked to box a few rounds in front of the camera, with a "dark un" to be selected locally. This was agreed to, and a celebrated bruiser was brought over from Newark. When this "sparring partner" came to face Corbett in the imitation ring he was so paralyzed with terror he could hardly move. It was just after Corbett had won one of his big battles as a prize-fighter, and the dismay of his opponent was excusable. The "boys" at the laboratory still laugh consumedly when they tell about it.

The first motion-picture studio was dubbed by the staff the "Black Maria." It was an unpretentious oblong wooden structure erected in the laboratory yard, and had a movable roof in the central part. This roof could be raised or lowered at will. The building was covered with black roofing paper, and was also painted black inside. There was no scenery to render gay this lugubrious environment, but the black interior served as the common background for the performers, throwing all their actions into high relief. The whole structure was set on a pivot so that it could be swung around with the sun; and the movable roof was opened so that the accentuating sunlight could stream in upon the actor whose gesticulations were being caught by the camera. These beginnings and crudities are very remote from the elaborate and expensive paraphernalia and machinery with which the art is furnished to-day.

At the present time the studios in which motion pictures are taken are expensive and pretentious affairs. An immense building of glass, with all the properties and stage-settings of a regular theatre, is required. The Bronx Park studio of the Edison company cost at least one hundred thousand dollars, while the well-known house of Pathe Freres in France—one of Edison's licensees—makes use of no fewer than seven of these glass theatres. All of the larger producers of pictures in this country and abroad employ regular stock companies of actors, men and women selected especially for their skill in pantomime, although, as most observers have perhaps suspected, in the actual taking of the pictures the performers are required to carry on an animated and prepared dialogue with the same spirit and animation as on the regular stage. Before setting out on the preparation of a picture, the book is first written—known in the business as a scenario—giving a complete statement as to the scenery, drops and background, and the sequence of events, divided into scenes as in an ordinary play. These are placed in the hands of a "producer," corresponding to a stage-director, generally an actor or theatrical man of experience, with a highly developed dramatic instinct. The various actors are selected, parts are assigned, and the scene-painters are set to work on the production of the desired scenery. Before the photographing of a scene, a long series of rehearsals takes place, the incidents being gone over and over again until the actors are "letter perfect." So persistent are the producers in the matter of rehearsals and the refining and elaboration of details, that frequently a picture that may be actually photographed and reproduced in fifteen minutes, may require two or three weeks for its production. After the rehearsal of a scene has advanced sufficiently to suit the critical requirements of the producer, the camera man is in requisition, and he is consulted as to lighting so as to produce the required photographic effect. Preferably, of course, sunlight is used whenever possible, hence the glass studios; but on dark days, and when night-work is necessary, artificial light of enormous candle-power is used, either mercury arcs or ordinary arc lights of great size and number.

Under all conditions the light is properly screened and diffused to suit the critical eye of the camera man. All being in readiness, the actual picture is taken, the actors going through their rehearsed parts, the producer standing out of the range of the camera, and with a megaphone to his lips yelling out his instructions, imprecations, and approval, and the camera man grinding at the crank of the camera and securing the pictures at the rate of twenty or more per second, making a faithful and permanent record of every movement and every change of facial expression. At the end of the scene the negative is developed in the ordinary way, and is then ready for use in the printing of the positives for sale. When a further scene in the play takes place in the same setting, and without regard to its position in the plot, it is taken up, rehearsed, and photographed in the same way, and afterward all the scenes are cemented together in the proper sequence, and form the complete negative. Frequently, therefore, in the production of a motion-picture play, the first and the last scene may be taken successively, the only thing necessary being, of course, that after all is done the various scenes should be arranged in their proper order. The frames, having served their purpose, now go back to the scene-painter for further use. All pictures are not taken in studios, because when light and weather permit and proper surroundings can be secured outside, scenes can best be obtained with natural scenery—city streets, woods, and fields. The great drawback to the taking of pictures out-of-doors, however, is the inevitable crowd, attracted by the novelty of the proceedings, which makes the camera man's life a torment by getting into the field of his instrument. The crowds are patient, however, and in one Edison picture involving the blowing up of a bridge by the villain of the piece and the substitution of a pontoon bridge by a company of engineers just in time to allow the heroine to pass over in her automobile, more than a thousand people stood around for almost an entire day waiting for the tedious rehearsals to end and the actual performance to begin. Frequently large bodies of men are used in pictures, such as troops of soldiers, and it is an open secret that for weeks during the Boer War regularly equipped British and Boer armies confronted each other on the peaceful hills of Orange, New Jersey, ready to enact before the camera the stirring events told by the cable from the seat of hostilities. These conflicts were essentially harmless, except in one case during the battle of Spion Kopje, when "General Cronje," in his efforts to fire a wooden cannon, inadvertently dropped his fuse into a large glass bottle containing gunpowder. The effect was certainly most dramatic, and created great enthusiasm among the many audiences which viewed the completed production; but the unfortunate general, who is still an employee, was taken to the hospital, and even now, twelve years afterward, he says with a grin that whenever he has a moment of leisure he takes the time to pick a few pieces of glass from his person!

Edison's great contribution to the regular stage was the incandescent electric lamp, which enabled the production of scenic effects never before even dreamed of, but which we accept now with so much complacency. Yet with the motion picture, effects are secured that could not be reproduced to the slightest extent on the real stage. The villain, overcome by a remorseful conscience, sees on the wall of the room the very crime which he committed, with HIMSELF as the principal actor; one of the easy effects of double exposure. The substantial and ofttimes corpulent ghost or spirit of the real stage has been succeeded by an intangible wraith, as transparent and unsubstantial as may be demanded in the best book of fairy tales—more double exposure. A man emerges from the water with a splash, ascends feet foremost ten yards or more, makes a graceful curve and lands on a spring-board, runs down it to the bank, and his clothes fly gently up from the ground and enclose his person—all unthinkable in real life, but readily possible by running the motion-picture film backward! The fairy prince commands the princess to appear, consigns the bad brothers to instant annihilation, turns the witch into a cat, confers life on inanimate things; and many more startling and apparently incomprehensible effects are carried out with actual reality, by stop-work photography. In one case, when the command for the heroine to come forth is given, the camera is stopped, the young woman walks to the desired spot, and the camera is again started; the effect to the eye—not knowing of this little by-play—is as if she had instantly appeared from space. The other effects are perhaps obvious, and the field and opportunities are absolutely unlimited. Other curious effects are secured by taking the pictures at a different speed from that at which they are exhibited. If, for example, a scene occupying thirty seconds is reproduced in ten seconds, the movements will be three times as fast, and vice versa. Many scenes familiar to the reader, showing automobiles tearing along the road and rounding corners at an apparently reckless speed, are really pictures of slow and dignified movements reproduced at a high speed.

Brief reference has been made to motion pictures of educational subjects, and in this field there are very great opportunities for development. The study of geography, scenes and incidents in foreign countries, showing the lives and customs and surroundings of other peoples, is obviously more entertaining to the child when actively depicted on the screen than when merely described in words. The lives of great men, the enacting of important historical events, the reproduction of great works of literature, if visually presented to the child must necessarily impress his mind with greater force than if shown by mere words. We predict that the time is not far distant when, in many of our public schools, two or three hours a week will be devoted to this rational and effective form of education.

By applying microphotography to motion pictures an additional field is opened up, one phase of which may be the study of germ life and bacteria, so that our future medical students may become as familiar with the habits and customs of the Anthrax bacillus, for example, as of the domestic cat.

From whatever point of view the subject is approached, the fact remains that in the motion picture, perhaps more than with any other invention, Edison has created an art that must always make a special appeal to the mind and emotions of men, and although so far it has not advanced much beyond the field of amusement, it contains enormous possibilities for serious development in the future. Let us not think too lightly of the humble five-cent theatre with its gaping crowd following with breathless interest the vicissitudes of the beautiful heroine. Before us lies an undeveloped land of opportunity which is destined to play an important part in the growth and welfare of the human race.



CHAPTER XXII

THE DEVELOPMENT OF THE EDISON STORAGE BATTERY

IT is more than a hundred years since the elementary principle of the storage battery or "accumulator" was detected by a Frenchman named Gautherot; it is just fifty years since another Frenchman, named Plante, discovered that on taking two thin plates of sheet lead, immersing them in dilute sulphuric acid, and passing an electric current through the cell, the combination exhibited the ability to give back part of the original charging current, owing to the chemical changes and reactions set up. Plante coiled up his sheets into a very handy cell like a little roll of carpet or pastry; but the trouble was that the battery took a long time to "form." One sheet becoming coated with lead peroxide and the other with finely divided or spongy metallic lead, they would receive current, and then, even after a long period of inaction, furnish or return an electromotive force of from 1.85 to 2.2 volts. This ability to store up electrical energy produced by dynamos in hours otherwise idle, whether driven by steam, wind, or water, was a distinct advance in the art; but the sensational step was taken about 1880, when Faure in France and Brush in America broke away from the slow and weary process of "forming" the plates, and hit on clever methods of furnishing them "ready made," so to speak, by dabbing red lead onto lead-grid plates, just as butter is spread on a slice of home-made bread. This brought the storage battery at once into use as a practical, manufactured piece of apparatus; and the world was captivated with the idea. The great English scientist, Sir William Thomson, went wild with enthusiasm when a Faure "box of electricity" was brought over from Paris to him in 1881 containing a million foot-pounds of stored energy. His biographer, Dr. Sylvanus P. Thompson, describes him as lying ill in bed with a wounded leg, and watching results with an incandescent lamp fastened to his bed curtain by a safety-pin, and lit up by current from the little Faure cell. Said Sir William: "It is going to be a most valuable, practical affair—as valuable as water-cisterns to people whether they had or had not systems of water-pipes and water-supply." Indeed, in one outburst of panegyric the shrewd physicist remarked that he saw in it "a realization of the most ardently and increasingly felt scientific aspiration of his life—an aspiration which he hardly dared to expect or to see realized." A little later, however, Sir William, always cautious and canny, began to discover the inherent defects of the primitive battery, as to disintegration, inefficiency, costliness, etc., and though offered tempting inducements, declined to lend his name to its financial introduction. Nevertheless, he accepted the principle as valuable, and put the battery to actual use.

For many years after this episode, the modern lead-lead type of battery thus brought forward with so great a flourish of trumpets had a hard time of it. Edison's attitude toward it, even as a useful supplement to his lighting system, was always one of scepticism, and he remarked contemptuously that the best storage battery he knew was a ton of coal. The financial fortunes of the battery, on both sides of the Atlantic, were as varied and as disastrous as its industrial; but it did at last emerge, and "made good." By 1905, the production of lead-lead storage batteries in the United States alone had reached a value for the year of nearly $3,000,000, and it has increased greatly since that time. The storage battery is now regarded as an important and indispensable adjunct in nearly all modern electric-lighting and electric-railway systems of any magnitude; and in 1909, in spite of its weight, it had found adoption in over ten thousand automobiles of the truck, delivery wagon, pleasure carriage, and runabout types in America.

Edison watched closely all this earlier development for about fifteen years, not changing his mind as to what he regarded as the incurable defects of the lead-lead type, but coming gradually to the conclusion that if a storage battery of some other and better type could be brought forward, it would fulfil all the early hopes, however extravagant, of such men as Kelvin (Sir William Thomson), and would become as necessary and as universal as the incandescent lamp or the electric motor. The beginning of the present century found him at his point of new departure.

Generally speaking, non-technical and uninitiated persons have a tendency to regard an invention as being more or less the ultimate result of some happy inspiration. And, indeed, there is no doubt that such may be the fact in some instances; but in most cases the inventor has intentionally set out to accomplish a definite and desired result—mostly through the application of the known laws of the art in which he happens to be working. It is rarely, however, that a man will start out deliberately, as Edison did, to evolve a radically new type of such an intricate device as the storage battery, with only a meagre clew and a vague starting-point.

In view of the successful outcome of the problem which, in 1900, he undertook to solve, it will be interesting to review his mental attitude at that period. It has already been noted at the end of a previous chapter that on closing the magnetic iron-ore concentrating plant at Edison, New Jersey, he resolved to work on a new type of storage battery. It was about this time that, in the course of a conversation with Mr. R. H. Beach, then of the street-railway department of the General Electric Company, he said: "Beach, I don't think Nature would be so unkind as to withhold the secret of a GOOD storage battery if a real earnest hunt for it is made. I'm going to hunt."

Frequently Edison has been asked what he considers the secret of achievement. To this query he has invariably replied: "Hard work, based on hard thinking." The laboratory records bear the fullest witness that he has consistently followed out this prescription to the utmost. The perfection of all his great inventions has been signalized by patient, persistent, and incessant effort which, recognizing nothing short of success, has resulted in the ultimate accomplishment of his ideas. Optimistic and hopeful to a high degree, Edison has the happy faculty of beginning the day as open-minded as a child—yesterday's disappointments and failures discarded and discounted by the alluring possibilities of to-morrow.

Of all his inventions, it is doubtful whether any one of them has called forth more original thought, work, perseverance, ingenuity, and monumental patience than the one we are now dealing with. One of his associates who has been through the many years of the storage-battery drudgery with him said: "If Edison's experiments, investigations, and work on this storage battery were all that he had ever done, I should say that he was not only a notable inventor, but also a great man. It is almost impossible to appreciate the enormous difficulties that have been overcome."

From a beginning which was made practically in the dark, it was not until he had completed more than ten thousand experiments that he obtained any positive preliminary results whatever. Through all this vast amount of research there had been no previous signs of the electrical action he was looking for. These experiments had extended over many months of constant work by day and night, but there was no breakdown of Edison's faith in ultimate success—no diminution of his sanguine and confident expectations. The failure of an experiment simply meant to him that he had found something else that would not work, thus bringing the possible goal a little nearer by a process of painstaking elimination.

Now, however, after these many months of arduous toil, in which he had examined and tested practically all the known elements in numerous chemical combinations, the electric action he sought for had been obtained, thus affording him the first inkling of the secret that he had industriously tried to wrest from Nature. It should be borne in mind that from the very outset Edison had disdained any intention of following in the only tracks then known by employing lead and sulphuric acid as the components of a successful storage battery. Impressed with what he considered the serious inherent defects of batteries made of these materials, and the tremendously complex nature of the chemical reactions taking place in all types of such cells, he determined boldly at the start that he would devise a battery without lead, and one in which an alkaline solution could be used—a form which would, he firmly believed, be inherently less subject to decay and dissolution than the standard type, which after many setbacks had finally won its way to an annual production of many thousands of cells, worth millions of dollars.

Two or three thousand of the first experiments followed the line of his well-known primary battery in the attempted employment of copper oxide as an element in a new type of storage cell; but its use offered no advantages, and the hunt was continued in other directions and pursued until Edison satisfied himself by a vast number of experiments that nickel and iron possessed the desirable qualifications he was in search of.

This immense amount of investigation which had consumed so many months of time, and which had culminated in the discovery of a series of reactions between nickel and iron that bore great promise, brought Edison merely within sight of a strange and hitherto unexplored country. Slowly but surely the results of the last few thousands of his preliminary experiments had pointed inevitably to a new and fruitful region ahead. He had discovered the hidden passage and held the clew which he had so industriously sought. And now, having outlined a definite path, Edison was all afire to push ahead vigorously in order that he might enter in and possess the land.

It is a trite saying that "history repeats itself," and certainly no axiom carries more truth than this when applied to the history of each of Edison's important inventions. The development of the storage battery has been no exception; indeed, far from otherwise, for in the ten years that have elapsed since the time he set himself and his mechanics, chemists, machinists, and experimenters at work to develop a practical commercial cell, the old story of incessant and persistent efforts so manifest in the working out of other inventions was fully repeated.

Very soon after he had decided upon the use of nickel and iron as the elemental metals for his storage battery, Edison established a chemical plant at Silver Lake, New Jersey, a few miles from the Orange laboratory, on land purchased some time previously. This place was the scene of the further experiments to develop the various chemical forms of nickel and iron, and to determine by tests what would be best adapted for use in cells manufactured on a commercial scale. With a little handful of selected experimenters gathered about him, Edison settled down to one of his characteristic struggles for supremacy. To some extent it was a revival of the old Menlo Park days (or, rather, nights). Some of these who had worked on the preliminary experiments, with the addition of a few new-comers, toiled together regardless of passing time and often under most discouraging circumstances, but with that remarkable esprit de corps that has ever marked Edison's relations with his co-workers, and that has contributed so largely to the successful carrying out of his ideas.

The group that took part in these early years of Edison's arduous labors included his old-time assistant, Fred Ott, together with his chemist, J. W. Aylsworth, as well as E. J. Ross, Jr., W. E. Holland, and Ralph Arbogast, and a little later W. G. Bee, all of whom have grown up with the battery and still devote their energies to its commercial development. One of these workers, relating the strenuous experiences of these few years, says: "It was hard work and long hours, but still there were some things that made life pleasant. One of them was the supper-hour we enjoyed when we worked nights. Mr. Edison would have supper sent in about midnight, and we all sat down together, including himself. Work was forgotten for the time, and all hands were ready for fun. I have very pleasant recollections of Mr. Edison at these times. He would always relax and help to make a good time, and on some occasions I have seen him fairly overflow with animal spirits, just like a boy let out from school. After the supper-hour was over, however, he again became the serious, energetic inventor, deeply immersed in the work at hand.

"He was very fond of telling and hearing stories, and always appreciated a joke. I remember one that he liked to get off on us once in a while. Our lighting plant was in duplicate, and about 12.30 or 1 o'clock in the morning, at the close of the supper-hour, a change would be made from one plant to the other, involving the gradual extinction of the electric lights and their slowly coming up to candle-power again, the whole change requiring probably about thirty seconds. Sometimes, as this was taking place, Edison would fold his hands, compose himself as if he were in sound sleep, and when the lights were full again would apparently wake up, with the remark, 'Well, boys, we've had a fine rest; now let's pitch into work again.'"

Another interesting and amusing reminiscence of this period of activity has been gathered from another of the family of experimenters: "Sometimes, when Mr. Edison had been working long hours, he would want to have a short sleep. It was one of the funniest things I ever witnessed to see him crawl into an ordinary roll-top desk and curl up and take a nap. If there was a sight that was still more funny, it was to see him turn over on his other side, all the time remaining in the desk. He would use several volumes of Watts's Dictionary of Chemistry for a pillow, and we fellows used to say that he absorbed the contents during his sleep, judging from the flow of new ideas he had on waking."

Such incidents as these serve merely to illustrate the lighter moments that stand out in relief against the more sombre background of the strenuous years, for, of all the absorbingly busy periods of Edison's inventive life, the first five years of the storage-battery era was one of the very busiest of them all. It was not that there remained any basic principle to be discovered or simplified, for that had already been done; but it was in the effort to carry these principles into practice that there arose the numerous difficulties that at times seemed insurmountable. But, according to another co-worker, "Edison seemed pleased when he used to run up against a serious difficulty. It would seem to stiffen his backbone and make him more prolific of new ideas. For a time I thought I was foolish to imagine such a thing, but I could never get away from the impression that he really appeared happy when he ran up against a serious snag. That was in my green days, and I soon learned that the failure of an experiment never discourages him unless it is by reason of the carelessness of the man making it. Then Edison gets disgusted. If it fails on its merits, he doesn't worry or fret about it, but, on the contrary, regards it as a useful fact learned; remains cheerful and tries something else. I have known him to reverse an unsuccessful experiment and come out all right."

To follow Edison's trail in detail through the innumerable twists and turns of his experimentation and research on the storage battery, during the past ten years, would not be in keeping with the scope of this narrative, nor would it serve any useful purpose. Besides, such details would fill a big volume. The narrative, however, would not be complete without some mention of the general outline of his work, and reference may be made briefly to a few of the chief items. And lest the reader think that the word "innumerable" may have been carelessly or hastily used above, we would quote the reply of one of the laboratory assistants when asked how many experiments had been made on the Edison storage battery since the year 1900: "Goodness only knows! We used to number our experiments consecutively from 1 to 10,000, and when we got up to 10,000 we turned back to 1 and ran up to 10,000 again, and so on. We ran through several series—I don't know how many, and have lost track of them now, but it was not far from fifty thousand."

From the very first, Edison's broad idea of his storage battery was to make perforated metallic containers having the active materials packed therein; nickel hydrate for the positive and iron oxide for the negative plate. This plan has been adhered to throughout, and has found its consummation in the present form of the completed commercial cell, but in the middle ground which stands between the early crude beginnings and the perfected type of to-day there lies a world of original thought, patient plodding, and achievement.

The first necessity was naturally to obtain the best and purest compounds for active materials. Edison found that comparatively little was known by manufacturing chemists about nickel and iron oxides of the high grade and purity he required. Hence it became necessary for him to establish his own chemical works and put them in charge of men specially trained by himself, with whom he worked. This was the plant at Silver Lake, above referred to. Here, for several years, there was ceaseless activity in the preparation of these chemical compounds by every imaginable process and subsequent testing. Edison's chief chemist says: "We left no stone unturned to find a way of making those chemicals so that they would give the highest results. We carried on the experiments with the two chemicals together. Sometimes the nickel would be ahead in the tests, and then again it would fall behind. To stimulate us to greater improvement, Edison hung up a card which showed the results of tests in milliampere-hours given by the experimental elements as we tried them with the various grades of nickel and iron we had made. This stirred up a great deal of ambition among the boys to push the figures up. Some of our earliest tests showed around 300, but as we improved the material, they gradually crept up to over 500. Just about that time Edison made a trip to Canada, and when he came back we had made such good progress that the figures had crept up to about 1000. I well remember how greatly he was pleased."

In speaking of the development of the negative element of the battery, Mr. Aylsworth said: "In like manner the iron element had to be developed and improved; and finally the iron, which had generally enjoyed superiority in capacity over its companion, the nickel element, had to go in training in order to retain its lead, which was imperative, in order to produce a uniform and constant voltage curve. In talking with me one day about the difficulties under which we were working and contrasting them with the phonograph experimentation, Edison said: 'In phonographic work we can use our ears and our eyes, aided with powerful microscopes; but in the battery our difficulties cannot be seen or heard, but must be observed by our mind's eye!' And by reason of the employment of such vision in the past, Edison is now able to see quite clearly through the forest of difficulties after eliminating them one by one."

The size and shape of the containing pockets in the battery plates or elements and the degree of their perforation were matters that received many years of close study and experiment; indeed, there is still to-day constant work expended on their perfection, although their present general form was decided upon several years ago. The mechanical construction of the battery, as a whole, in its present form, compels instant admiration on account of its beauty and completeness. Mr. Edison has spared neither thought, ingenuity, labor, nor money in the effort to make it the most complete and efficient storage cell obtainable, and the results show that his skill, judgment, and foresight have lost nothing of the power that laid the foundation of, and built up, other great arts at each earlier stage of his career.

Among the complex and numerous problems that presented themselves in the evolution of the battery was the one concerning the internal conductivity of the positive unit. The nickel hydrate was a poor electrical conductor, and although a metallic nickel pocket might be filled with it, there would not be the desired electrical action unless a conducting substance were mixed with it, and so incorporated and packed that there would be good electrical contact throughout. This proved to be a most knotty and intricate puzzle—tricky and evasive—always leading on and promising something, and at the last slipping away leaving the work undone. Edison's remarkable patience and persistence in dealing with this trying problem and in finally solving it successfully won for him more than ordinary admiration from his associates. One of them, in speaking of the seemingly interminable experiments to overcome this trouble, said: "I guess that question of conductivity of the positive pocket brought lots of gray hairs to his head. I never dreamed a man could have such patience and perseverance. Any other man than Edison would have given the whole thing up a thousand times, but not he! Things looked awfully blue to the whole bunch of us many a time, but he was always hopeful. I remember one time things looked so dark to me that I had just about made up my mind to throw up my job, but some good turn came just then and I didn't. Now I'm glad I held on, for we've got a great future."

The difficulty of obtaining good electrical contact in the positive element was indeed Edison's chief trouble for many years. After a great amount of work and experimentation he decided upon a certain form of graphite, which seemed to be suitable for the purpose, and then proceeded to the commercial manufacture of the battery at a special factory in Glen Ridge, New Jersey, installed for the purpose. There was no lack of buyers, but, on the contrary, the factory was unable to turn out batteries enough. The newspapers had previously published articles showing the unusual capacity and performance of the battery, and public interest had thus been greatly awakened.

Notwithstanding the establishment of a regular routine of manufacture and sale, Edison did not cease to experiment for improvement. Although the graphite apparently did the work desired of it, he was not altogether satisfied with its performance and made extended trials of other substances, but at that time found nothing that on the whole served the purpose better. Continuous tests of the commercial cells were carried on at the laboratory, as well as more practical and heavy tests in automobiles, which were constantly kept running around the adjoining country over all kinds of roads. All these tests were very closely watched by Edison, who demanded rigorously that the various trials of the battery should be carried on with all strenuousness so as to get the utmost results and develop any possible weakness. So insistent was he on this, that if any automobile should run several days without bursting a tire or breaking some part of the machine, he would accuse the chauffeur of picking out easy roads.

After these tests had been going on for some time, and some thousands of cells had been sold and were giving satisfactory results to the purchasers, the test sheets and experience gathered from various sources pointed to the fact that occasionally a cell here and there would show up as being short in capacity. Inasmuch as the factory processes were very exact and carefully guarded, and every cell was made as uniform as human skill and care could provide, there thus arose a serious problem. Edison concentrated his powers on the investigation of this trouble, and found that the chief cause lay in the graphite. Some other minor matters also attracted his attention. What to do, was the important question that confronted him. To shut down the factory meant great loss and apparent failure. He realized this fully, but he also knew that to go on would simply be to increase the number of defective batteries in circulation, which would ultimately result in a permanent closure and real failure. Hence he took the course which one would expect of Edison's common sense and directness of action. He was not satisfied that the battery was a complete success, so he shut down and went to experimenting once more.

"And then," says one of the laboratory men, "we started on another series of record-breaking experiments that lasted over five years. I might almost say heart-breaking, too, for of all the elusive, disappointing things one ever hunted for that was the worst. But secrets have to be long-winded and roost high if they want to get away when the 'Old Man' goes hunting for them. He doesn't get mad when he misses them, but just keeps on smiling and firing, and usually brings them into camp. That's what he did on the battery, for after a whole lot of work he perfected the nickel-flake idea and process, besides making the great improvement of using tubes instead of flat pockets for the positive. He also added a minor improvement here and there, and now we have a finer battery than we ever expected."

In the interim, while the experimentation of these last five years was in progress, many customers who had purchased batteries of the original type came knocking at the door with orders in their hands for additional outfits wherewith to equip more wagons and trucks. Edison expressed his regrets, but said he was not satisfied with the old cells and was engaged in improving them. To which the customers replied that THEY were entirely satisfied and ready and willing to pay for more batteries of the same kind; but Edison could not be moved from his determination, although considerable pressure was at times brought to bear to sway his decision.

Experiment was continued beyond the point of peradventure, and after some new machinery had been built, the manufacture of the new type of cell was begun in the early summer of 1909, and at the present writing is being extended as fast as the necessary additional machinery can be made. The product is shipped out as soon as it is completed.

The nickel flake, which is Edison's ingenious solution of the conductivity problem, is of itself a most interesting product, intensely practical in its application and fascinating in its manufacture. The flake of nickel is obtained by electroplating upon a metallic cylinder alternate layers of copper and nickel, one hundred of each, after which the combined sheet is stripped from the cylinder. So thin are the layers that this sheet is only about the thickness of a visiting-card, and yet it is composed of two hundred layers of metal. The sheet is cut into tiny squares, each about one-sixteenth of an inch, and these squares are put into a bath where the copper is dissolved out. This releases the layers of nickel, so that each of these small squares becomes one hundred tiny sheets, or flakes, of pure metallic nickel, so thin that when they are dried they will float in the air, like thistle-down.

In their application to the manufacture of batteries, the flakes are used through the medium of a special machine, so arranged that small charges of nickel hydrate and nickel flake are alternately fed into the pockets intended for positives, and tamped down with a pressure equal to about four tons per square inch. This insures complete and perfect contact and consequent electrical conductivity throughout the entire unit.

The development of the nickel flake contains in itself a history of patient investigation, labor, and achievement, but we have not space for it, nor for tracing the great work that has been done in developing and perfecting the numerous other parts and adjuncts of this remarkable battery. Suffice it to say that when Edison went boldly out into new territory, after something entirely unknown, he was quite prepared for hard work and exploration. He encountered both in unstinted measure, but kept on going forward until, after long travel, he had found all that he expected and accomplished something more beside. Nature DID respond to his whole-hearted appeal, and, by the time the hunt was ended, revealed a good storage battery of entirely new type. Edison not only recognized and took advantage of the principles he had discovered, but in adapting them for commercial use developed most ingenious processes and mechanical appliances for carrying his discoveries into practical effect. Indeed, it may be said that the invention of an enormous variety of new machines and mechanical appliances rendered necessary by each change during the various stages of development of the battery, from first to last, stands as a lasting tribute to the range and versatility of his powers.

It is not within the scope of this narrative to enter into any description of the relative merits of the Edison storage battery, that being the province of a commercial catalogue. It does, however, seem entirely allowable to say that while at the present writing the tests that have been made extend over a few years only, their results and the intrinsic value of this characteristic Edison invention are of such a substantial nature as to point to the inevitable growth of another great industry arising from its manufacture, and to its wide-spread application to many uses.

The principal use that Edison has had in mind for his battery is transportation of freight and passengers by truck, automobile, and street-car. The greatly increased capacity in proportion to weight of the Edison cell makes it particularly adaptable for this class of work on account of the much greater radius of travel that is possible by its use. The latter point of advantage is the one that appeals most to the automobilist, as he is thus enabled to travel, it is asserted, more than three times farther than ever before on a single charge of the battery.

Edison believes that there are important advantages possible in the employment of his storage battery for street-car propulsion. Under the present system of operation, a plant furnishing the electric power for street railways must be large enough to supply current for the maximum load during "rush hours," although much of the machinery may be lying idle and unproductive in the hours of minimum load. By the use of storage-battery cars, this immense and uneconomical maximum investment in plant can be cut down to proportions of true commercial economy, as the charging of the batteries can be conducted at a uniform rate with a reasonable expenditure for generating machinery. Not only this, but each car becomes an independently moving unit, not subject to delay by reason of a general breakdown of the power plant or of the line. In addition to these advantages, the streets would be freed from their burden of trolley wires or conduits. To put his ideas into practice, Edison built a short railway line at the Orange works in the winter of 1909-10, and, in co-operation with Mr. R. H. Beach, constructed a special type of street-car, and equipped it with motor, storage battery, and other necessary operating devices. This car was subsequently put upon the street-car lines in New York City, and demonstrated its efficiency so completely that it was purchased by one of the street-car companies, which has since ordered additional cars for its lines. The demonstration of this initial car has been watched with interest by many railroad officials, and its performance has been of so successful a nature that at the present writing (the summer of 1910) it has been necessary to organize and equip a preliminary factory in which to construct many other cars of a similar type that have been ordered by other street-railway companies. This enterprise will be conducted by a corporation which has been specially organized for the purpose. Thus, there has been initiated the development of a new and important industry whose possible ultimate proportions are beyond the range of present calculation. Extensive as this industry may become, however, Edison is firmly convinced that the greatest field for his storage battery lies in its adaptation to commercial trucking and hauling, and to pleasure vehicles, in comparison with which the street-car business even with its great possibilities—will not amount to more than 1 per cent.

Edison has pithily summed up his work and his views in an article on "The To-Morrows of Electricity and Invention" in Popular Electricity for June, 1910, in which he says: "For years past I have been trying to perfect a storage battery, and have now rendered it entirely suitable to automobile and other work. There is absolutely no reason why horses should be allowed within city limits; for between the gasoline and the electric car, no room is left for them. They are not needed. The cow and the pig have gone, and the horse is still more undesirable. A higher public ideal of health and cleanliness is working toward such banishment very swiftly; and then we shall have decent streets, instead of stables made out of strips of cobblestones bordered by sidewalks. The worst use of money is to make a fine thoroughfare, and then turn it over to horses. Besides that, the change will put the humane societies out of business. Many people now charge their own batteries because of lack of facilities; but I believe central stations will find in this work very soon the largest part of their load. The New York Edison Company, or the Chicago Edison Company, should have as much current going out for storage batteries as for power motors; and it will be so some near day."



CHAPTER XXIII

MISCELLANEOUS INVENTIONS

IT has been the endeavor in this narrative to group Edison's inventions and patents so that his work in the different fields can be studied independently and separately. The history of his career has therefore fallen naturally into a series of chapters, each aiming to describe some particular development or art; and, in a way, the plan has been helpful to the writers while probably useful to the readers. It happens, however, that the process has left a vast mass of discovery and invention wholly untouched, and relegates to a concluding brief chapter some of the most interesting episodes of a fruitful life. Any one who will turn to the list of Edison patents at the end of the book will find a large number of things of which not even casual mention has been made, but which at the time occupied no small amount of the inventor's time and attention, and many of which are now part and parcel of modern civilization. Edison has, indeed, touched nothing that he did not in some way improve. As Thoreau said: "The laws of the Universe are not indifferent, but are forever on the side of the most sensitive," and there never was any one more sensitive to the defects of every art and appliance, nor any one more active in applying the law of evolution. It is perhaps this many-sidedness of Edison that has impressed the multitude, and that in the "popular vote" taken a couple of years ago by the New York Herald placed his name at the head of the list of ten greatest living Americans. It is curious and pertinent to note that a similar plebiscite taken by a technical journal among its expert readers had exactly the same result. Evidently the public does not agree with the opinion expressed by the eccentric artist Blake in his "Marriage of Heaven and Hell," when he said: "Improvement makes strange roads; but the crooked roads without improvements are roads of Genius."

The product of Edison's brain may be divided into three classes. The first embraces such arts and industries, or such apparatus, as have already been treated. The second includes devices like the tasimeter, phonomotor, odoroscope, etc., and others now to be noted. The third embraces a number of projected inventions, partially completed investigations, inventions in use but not patented, and a great many caveats filed in the Patent Office at various times during the last forty years for the purpose of protecting his ideas pending their contemplated realization in practice. These caveats served their purpose thoroughly in many instances, but there have remained a great variety of projects upon which no definite action was ever taken. One ought to add the contents of an unfinished piece of extraordinary fiction based wholly on new inventions and devices utterly unknown to mankind. Some day the novel may be finished, but Edison has no inclination to go back to it, and says he cannot understand how any man is able to make a speech or write a book, for he simply can't do it.

After what has been said in previous chapters, it will not seem so strange that Edison should have hundreds of dormant inventions on his hands. There are human limitations even for such a tireless worker as he is. While the preparation of data for this chapter was going on, one of the writers in discussing with him the vast array of unexploited things said: "Don't you feel a sense of regret in being obliged to leave so many things uncompleted?" To which he replied: "What's the use? One lifetime is too short, and I am busy every day improving essential parts of my established industries." It must suffice to speak briefly of a few leading inventions that have been worked out, and to dismiss with scant mention all the rest, taking just a few items, as typical and suggestive, especially when Edison can himself be quoted as to them. Incidentally it may be noted that things, not words, are referred to; for Edison, in addition to inventing the apparatus, has often had to coin the word to describe it. A large number of the words and phrases in modern electrical parlance owe their origin to him. Even the "call-word" of the telephone, "Hello!" sent tingling over the wire a few million times daily was taken from Menlo Park by men installing telephones in different parts of the world, men who had just learned it at the laboratory, and thus made it a universal sesame for telephonic conversation.

It is hard to determine where to begin with Edison's miscellaneous inventions, but perhaps telegraphy has the "right of line," and Edison's work in that field puts him abreast of the latest wireless developments that fill the world with wonder. "I perfected a system of train telegraphy between stations and trains in motion whereby messages could be sent from the moving train to the central office; and this was the forerunner of wireless telegraphy. This system was used for a number of years on the Lehigh Valley Railroad on their construction trains. The electric wave passed from a piece of metal on top of the car across the air to the telegraph wires; and then proceeded to the despatcher's office. In my first experiments with this system I tried it on the Staten Island Railroad, and employed an operator named King to do the experimenting. He reported results every day, and received instructions by mail; but for some reason he could send messages all right when the train went in one direction, but could not make it go in the contrary direction. I made suggestions of every kind to get around this phenomenon. Finally I telegraphed King to find out if he had any suggestions himself; and I received a reply that the only way he could propose to get around the difficulty was to put the island on a pivot so it could be turned around! I found the trouble finally, and the practical introduction on the Lehigh Valley road was the result. The system was sold to a very wealthy man, and he would never sell any rights or answer letters. He became a spiritualist subsequently, which probably explains it." It is interesting to note that Edison became greatly interested in the later developments by Marconi, and is an admiring friend and adviser of that well-known inventor.

The earlier experiments with wireless telegraphy at Menlo Park were made at a time when Edison was greatly occupied with his electric-light interests, and it was not until the beginning of 1886 that he was able to spare the time to make a public demonstration of the system as applied to moving trains. Ezra T. Gilliland, of Boston, had become associated with him in his experiments, and they took out several joint patents subsequently. The first practical use of the system took place on a thirteen-mile stretch of the Staten Island Railroad with the results mentioned by Edison above.

A little later, Edison and Gilliland joined forces with Lucius J. Phelps, another investigator, who had been experimenting along the same lines and had taken out several patents. The various interests were combined in a corporation under whose auspices the system was installed on the Lehigh Valley Railroad, where it was used for several years. The official demonstration trip on this road took place on October 6, 1887, on a six-car train running to Easton, Pennsylvania, a distance of fifty-four miles. A great many telegrams were sent and received while the train was at full speed, including a despatch to the "cable king," John Pender. London, England, and a reply from him. [17]

[Footnote 17: Broadly described in outline, the system consisted of an induction circuit obtained by laying strips of tin along the top or roof of a railway car, and the installation of a special telegraph line running parallel with the track and strung on poles of only medium height. The train and also each signalling station were equipped with regulation telegraphic apparatus, such as battery, key, relay, and sounder, together with induction-coil and condenser. In addition, there was a transmitting device in the shape of a musical reed, or buzzer. In practice, this buzzer was continuously operated at high speed by a battery. Its vibrations were broken by means of a key into long and short periods, representing Morse characters, which were transmitted inductively from the train circuit to the pole line, or vice versa, and received by the operator at the other end through a high-resistance telephone receiver inserted in the secondary circuit of the induction-coil.]

Although the space between the cars and the pole line was probably not more than about fifty feet, it is interesting to note that in Edison's early experiments at Menlo Park he succeeded in transmitting messages through the air at a distance of 580 feet. Speaking of this and of his other experiments with induction telegraphy by means of kites, communicating from one to the other and thus from the kites to instruments on the earth, Edison said recently: "We only transmitted about two and one-half miles through the kites. What has always puzzled me since is that I did not think of using the results of my experiments on 'etheric force' that I made in 1875. I have never been able to understand how I came to overlook them. If I had made use of my own work I should have had long-distance wireless telegraphy."

In one of the appendices to this book is given a brief technical account of Edison's investigations of the phenomena which lie at the root of modern wireless or "space" telegraphy, and the attention of the reader is directed particularly to the description and quotations there from the famous note-books of Edison's experiments in regard to what he called "etheric force." It will be seen that as early as 1875 Edison detected and studied certain phenomena—i.e., the production of electrical effects in non-closed circuits, which for a time made him think he was on the trail of a new force, as there was no plausible explanation for them by the then known laws of electricity and magnetism. Later came the magnificent work of Hertz identifying the phenomena as "electromagnetic waves" in the ether, and developing a new world of theory and science based upon them and their production by disruptive discharges.

Edison's assertions were treated with scepticism by the scientific world, which was not then ready for the discovery and not sufficiently furnished with corroborative data. It is singular, to say the least, to note how Edison's experiments paralleled and proved in advance those that came later; and even his apparatus such as the "dark box" for making the tiny sparks visible (as the waves impinged on the receiver) bears close analogy with similar apparatus employed by Hertz. Indeed, as Edison sent the dark-box apparatus to the Paris Exposition in 1881, and let Batchelor repeat there the puzzling experiments, it seems by no means unlikely that, either directly or on the report of some friend, Hertz may thus have received from Edison a most valuable suggestion, the inventor aiding the physicist in opening up a wonderful new realm. In this connection, indeed, it is very interesting to quote two great authorities. In May, 1889, at a meeting of the Institution of Electrical Engineers in London, Dr. (now Sir) Oliver Lodge remarked in a discussion on a paper of his own on lightning conductors, embracing the Hertzian waves in its treatment: "Many of the effects I have shown—sparks in unsuspected places and other things—have been observed before. Henry observed things of the kind and Edison noticed some curious phenomena, and said it was not electricity but 'etheric force' that caused these sparks; and the matter was rather pooh-poohed. It was a small part of THIS VERY THING; only the time was not ripe; theoretical knowledge was not ready for it." Again in his "Signalling without Wires," in giving the history of the coherer principle, Lodge remarks: "Sparks identical in all respects with those discovered by Hertz had been seen in recent times both by Edison and by Sylvanus Thompson, being styled 'etheric force' by the former; but their theoretic significance had not been perceived, and they were somewhat sceptically regarded." During the same discussion in London, in 1889, Sir William Thomson (Lord Kelvin), after citing some experiments by Faraday with his insulated cage at the Royal Institution, said: "His (Faraday's) attention was not directed to look for Hertz sparks, or probably he might have found them in the interior. Edison seems to have noticed something of the kind in what he called 'etheric force.' His name 'etheric' may thirteen years ago have seemed to many people absurd. But now we are all beginning to call these inductive phenomena 'etheric.'" With which testimony from the great Kelvin as to his priority in determining the vital fact, and with the evidence that as early as 1875 he built apparatus that demonstrated the fact, Edison is probably quite content.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17     Next Part
Home - Random Browse