HotFreeBooks.com
Dry-Farming
by John A. Widtsoe
Previous Part     1  2  3  4  5     Next Part
Home - Random Browse

Whenever the soil is carefully stirred, as will be described, the value of shading as a means or checking evaporation disappears almost entirely. It is only with soils which are tolerably moist at the surface that shading acts beneficially.

Alfalfa in cultivated rows. This practice is employed to make possible the growth of alfalfa and other perennial crops on arid lands without irrigation.

The effect of tillage

Capillary soil-moisture moves from particle to particle until the surface is reached. The closer the soil grains are packed together, the greater the number of points or contact, and the more easily will the movement of the soil-moisture proceed. If by any means a layer of the soil is so loosened as to reduce the number of points of contact, the movement of the soil-moisture is correspondingly hindered. The process is somewhat similar to the experience in large r airway stations. Just before train time a great crowd of people is gathered outside or the gates ready to show their tickets. If one gate is opened, a certain number of passengers can pass through each minute; if two are opened, nearly twice as many may be admitted in the same time; if more gates are opened, the passengers will be able to enter the train more rapidly. The water in the lower layers of the soil is ready to move upward whenever a call is made upon it. To reach the surface it must pass from soil grain to soil grain, and the larger the number of grains that touch, the more quickly and easily will the water reach the surface, for the points of contact of the soil particles may be likened to the gates of the railway station. Now if, by a thorough stirring and loosening of the topsoil, the number of points of contact between the top and subsoil is greatly reduced, the upward flow of water is thereby largely checked. Such a loosening of the topsoil for the purpose of reducing evaporation from the topsoil has come to be called cultivation, and includes plowing, harrowing, disking, hoeing, and other cultural operations by which the topsoil is stirred. The breaking of the points of contact between the top and subsoil is undoubtedly the main reason for the efficiency of cultivation, but it is also to be remembered that such stirring helps to dry the top soil very thoroughly, and as has been explained a layer of dry soil of itself is a very effective check upon surface evaporation.

That the stirring or cultivation of the topsoil really does diminish evaporation of water from the soil has been shown by numerous investigations. In 1868, Nessler found that during six weeks of an ordinary German summer a stirred soil lost 510 grams of water per square foot, while the adjoining compacted soil lost 1680 grams,—a saving due to cultivation of nearly 60 per cent. Wagner, testing the correctness of Nessler's work, found, in 1874, that cultivation reduced the evaporation a little more than 60 per cent; Johnson, in 1878, confirmed the truth of the principle on American soils, and Levi Stockbridge, working about the same time, also on American soils, found that cultivation diminished evaporation on a clay soil about 23 per cent, on a sandy loam 55 per cent, and on a heavy loam nearly 13 per cent. All the early work done on this subject was done under humid conditions, and it is only in recent years that confirmation of this important principle has been obtained for the soils of the dry-farm region. Fortier, working under California conditions, determined that cultivation reduced the evaporation from the soil surface over 55 per cent. At the Utah Station similar experiments have shown that the saving of soil-moisture by cultivation was 63 per cent for a clay soil, 34 per cent for a coarse sand, and 13 per cent for a clay loam. Further, practical experience has demonstrated time and time again that in cultivation the dry-farmer has a powerful means of preventing evaporation from agricultural soils.

Closely connected with cultivation is the practice of scattering straw or other litter over the ground. Such artificial mulches are very effective in reducing evaporation. Ebermayer found that by spreading straw on the land, the evaporation was reduced 22 per cent; Wagner found under similar conditions a saving of 38 per cent, and these results have been confirmed by many other investigators. On the modern dry-farms, which are large in area, the artificial mulching of soils cannot become a very extensive practice, yet it is well to bear the principle in mind. The practice of harvesting dry-farm grain with the header and plowing under the high stubble in the fall is a phase of cultivation for water conservation that deserves special notice. The straw, thus incorporated into the soil, decomposes quite readily in spite of the popular notion to the contrary, and makes the soil more porous, and, therefore, more effectively worked for the prevention of evaporation. When this practice is continued for considerable periods, the topsoil becomes rich in organic matter, which assists in retarding evaporation, besides increasing the fertility of the land. When straw cannot be fed to advantage, as is yet the case on many of the western dry-farms, it would be better to scatter it over the land than to burn it, as is often done. Anything that covers the ground or loosens the topsoil prevents in a measure the evaporation of the water stored in lower soil depths for the use of crops.

Depth of cultivation

The all-important practice for the dry-farmer who is entering upon the growing season is cultivation. The soil must be covered continually with a deep layer of dry loose soil, which because of its looseness and dryness makes evaporation difficult. A leading question in connection with cultivation is the depth to which the soil should be stirred for the best results. Many of the early students of the subject found that a soil mulch only one half inch in depth was effective in retaining a large part of the soil-moisture which noncultivated soils would lose by evaporation. Soils differ greatly in the rate of evaporation from their surfaces. Some form a natural mulch when dried, which prevents further water loss. Others form only a thin hard crust, below which lies an active evaporating surface of wet soil. Soils which dry out readily and crumble on top into a natural mulch should be cultivated deeply, for a shallow cultivation does not extend beyond the naturally formed mulch. In fact, on certain calcareous soils, the surfaces of which dry out quickly and form a good protection against evaporation, shallow cultivations often cause a greater evaporation by disturbing the almost perfect natural mulch. Clay or sand soils, which do not so well form a natural mulch, will respond much better to shallow cultivations. In general, however, the deeper the cultivation, the more effective it is in reducing evaporation. Fortier, in the experiments in California to which allusion has already been made, showed the greater value of deep cultivation. During a period of fifteen days, beginning immediately after an irrigation, the soil which had not been mulched lost by evaporation nearly one fourth of the total amount of water that had been added. A mulch 4 inches deep saved about 72 per cent of the evaporation; a mulch 8 inches deep saved about 88 per cent, and a mulch 10 inches deep stopped evaporation almost wholly. It is a most serious mistake for the dry-farmer, who attempts cultivation for soil-moisture conservation, to fail to get the best results simply to save a few cents per acre in added labor.

When to cultivate or till

It has already been shown that the rate of evaporation is greater from a wet than from a dry surface. It follows, therefore, that the critical time for preventing evaporation is when the soil is wettest. After the soil is tolerably dry, a very large portion of the soil-moisture has been lost, which possibly might have been saved by earlier cultivation. The truth of this statement is well shown by experiments conducted by the Utah Station. In one case on a soil well filled with water, during a three weeks' period, nearly one half of the total loss occurred the first, while only one fifth fell on the third week. Of the amount lost during the first week, over 60 per cent occurred during the first three days. Cultivation should, therefore, be practiced as soon as possible after conditions favorable for evaporation have been established. This means, first, that in early spring, just as soon as the land is dry enough to be worked without causing puddling, the soil should be deeply and thoroughly stirred. Spring plowing, done as early as possible, is an excellent practice for forming a mulch against evaporation. Even when the land has been fall-plowed, spring plowing is very beneficial, though on fall-plowed land the disk harrow is usually used in early spring, and if it is set at rather a sharp angle, and properly weighted, so that it cuts deeply into the ground, it is practically as effective as spring plowing. The chief danger to the dry-farmer is that he will permit the early spring days to slip by until, when at last he begins spring cultivation, a large portion of the stored soil-water has been evaporated. It may be said that deep fall plowing, by permitting the moisture to sink quickly into the lower layers of soil, makes it possible to get upon the ground earlier in the spring. In fact, unplowed land cannot be cultivated as early as that which has gone through the winter in a plowed condition

If the land carries a fall-sown crop, early spring cultivation is doubly important. As soon as the plants are well up in spring the land should be gone over thoroughly several times if necessary, with an iron tooth harrow, the teeth of which are set to slant backward in order not to tear up the plants. The loose earth mulch thus formed is very effective in conserving moisture; and the few plants torn up are more than paid for by the increased water supply for the remaining plants. The wise dry-fanner cultivates his land, whether fallow or cropped, as early as possible in the spring.

Following the first spring plowing, disking, or cultivation, must come more cultivation. Soon after the spring plowing, the land should be disked and. then harrowed. Every device should be used to secure the formation of a layer of loose drying soil over the land surface. The season's crop will depend largely upon the effectiveness of this spring treatment.

As the season advances, three causes combine to permit the evaporation of soil-moisture.

First, there is a natural tendency, under the somewhat moist conditions of spring, for the soil to settle compactly and thus to restore the numerous capillary connections with the lower soil layers through which water escapes. Careful watch should therefore be kept upon the soil surface, and whenever the mulch is not loose, the disk or harrow should be run over the land.

Secondly, every rain of spring or summer tends to establish connections with the store of moisture in the soil. In fact, late spring and summer rains are often a disadvantage on dry-farms, which by cultural treatment have been made to contain a large store of moisture. It has been shown repeatedly that light rains draw moisture very quickly from soil layers many feet below the surface. The rainless summer is not feared by the dry-farmer whose soils are fertile and rich in moisture. It is imperative that at the very earliest moment after a spring or summer rain the topsoil be well stirred to prevent evaporation. It thus happens that in sections of frequent summer rains, as in the Great Plains area, the farmer has to harrow his land many times in succession, but the increased crop yields invariably justify the added expenditure of effort.

Thirdly, on the summer-fallowed ground weeds start vigorously in the spring and draw upon the soil-moisture, if allowed to grow, fully as heavily as a crop of wheat or corn. The dry-farmer must not allow a weed upon his land. Cultivation must he so continuous as to make weeds an impossibility. The belief that the elements added to the soil by weeds offset the loss of soil-moisture is wholly erroneous. The growth of weeds on a fallow dry-farm is more dangerous than the packed uncared-for topsoil. Many implements have been devised for the easy killing of weeds, but none appear to be better than the plow and the disk which are found on every farm. (See Chapter XV.)

When crops are growing on the land, thorough summer cultivation is somewhat more difficult, but must be practiced for the greatest certainty of crop yields. Potatoes, corn, and similar crops may be cultivated with comparative ease, by the use of ordinary cultivators. With wheat and the other small grains, generally, the damage done to the crop by harrowing late in the season is too great, and reliance is therefore placed on the shading power of the plants to prevent undue evaporation. However, until the wheat and other grains are ten to twelve inches high, it is perfectly safe to harrow them. The teeth should be set backward to diminish the tearing up of the plants, and the implement weighted enough to break the soil crust thoroughly. This practice has been fully tried out over the larger part of the dry-farm territory and found satisfactory.

So vitally important is a permanent soil mulch for the conservation for plant use of the water stored in the soil that many attempts have been made to devise means for the effective cultivation of land on which small grains and grasses are growing. In many places plants have been grown in rows so far apart that a man with a hoe could pass between them. Scofield has described this method as practiced successfully in Tunis. Campbell and others in America have proposed that a drill hole be closed every three feet to form a path wide enough for a horse to travel in and to pull a large spring tooth cultivator' with teeth so spaced as to strike between the rows of wheat. It is yet doubtful whether, under average conditions, such careful cultivation, at least of grain crops, is justified by the returns. Under conditions of high aridity, or where the store of soil-moisture is low, such treatment frequently stands between crop success and failure, and it is not unlikely that methods will be devised which will permit of the cheap and rapid cultivation between the rows of growing wheat. Meanwhile, the dry-farmer must always remember that the margin under which he works is small, and that his success depends upon the degree to which he prevents small wastes.

Dry-farm potatoes, Rosebud Co., Montana, 1909. Yield, 282 bushels per acre.

The conservation of soil-moisture depends upon the vigorous, unremitting, continuous stirring of the topsoil. Cultivation! cultivation! and more cultivation! must be the war-cry of the dry-farmer who battles against the water thieves of an arid climate.



CHAPTER IX

REGULATING THE TRANSPIRATION



Water that has entered the soil may be lost in three ways. First, it may escape by downward seepage, whereby it passes beyond the reach of plant roots and often reaches the standing water. In dry-farm districts such loss is a rare occurrence, for the natural precipitation is not sufficiently large to connect with the country drainage, and it may, therefore, be eliminated from consideration. Second, soil-water may be lost by direct evaporation from the surface soil. The conditions prevailing in arid districts favor strongly this manner of loss of soil-moisture. It has been shown, however, in the preceding chapter that the farmer, by proper and persistent cultivation of the topsoil, has it in his power to reduce this loss enough to be almost negligible in the farmer's consideration. Third, soil-water may be lost by evaporation from the plants themselves. While it is not generally understood, this source of loss is, in districts where dry-farming is properly carried on, very much larger than that resulting either from seepage or from direct evaporation. While plants are growing, evaporation from plants, ordinarily called transpiration, continues. Experiments performed in various arid districts have shown that one and a half to three times more water evaporates from the plant than directly from well-tilled soil. To the present very little has been learned concerning the most effective methods of checking or controlling this continual loss of water. Transpiration, or the evaporation of water from the plants themselves and the means of controlling this loss, are subjects of the deepest importance to the dry-farmer.

Absorption

To understand the methods for reducing transpiration, as proposed in this chapter, it is necessary to review briefly the manner in which plants take water from the soil. The roots are the organs of water absorption. Practically no water is taken into the plants by the stems or leaves, even under conditions of heavy rainfall. Such small quantities as may enter the plant through the stems and leaves are of very little value in furthering the life and growth of the plant. The roots alone are of real consequence in water absorption. All parts of the roots do not possess equal power of taking up soil-water. In the process of water absorption the younger roots are most active and effective. Even of the young roots, however, only certain parts are actively engaged in water absorption. At the very tips of the young growing roots are numerous fine hairs. These root-hairs, which cluster about the growing point of the young roots, are the organs of the plant that absorb soil-water. They are of value only for limited periods of time, for as they grow older, they lose their power of water absorption. In fact, they are active only when they are in actual process of growth. It follows, therefore, that water absorption occurs near the tips of the growing roots, and whenever a plant ceases to grow the water absorption ceases also. The root-hairs are filled with a dilute solution of various substances, as yet poorly understood, which plays an important tent part in the ab sorption of water and plant-food from the soil.

Owing to their minuteness, the root-hairs are in most cases immersed in the water film that surrounds the soil particles, and the soil-water is taken directly into the roots from the soil-water film by the process known as osmosis. The explanation of this inward movement is complicated and need not be discussed here. It is sufficient to say that the concentration or strength of the solution within the root-hair is of different degree from the soil-water solution. The water tends, therefore, to move from the soil into the root, in order to make the solutions inside and outside of the root of the same concentration. If it should ever occur that the soil-water and the water within the root-hair became the same concentration, that is to say, contained the same substances in the same proportional amounts, there would be no further inward movement of water. Moreover, if it should happen that the soil-water is stronger than the water within the root-hair, the water would tend to pass from the plant into the soil. This is the condition that prevails in many alkali lands of the West, and is the cause of the death of plants growing on such lands.

It is clear that under these circumstances not only water enters the root-hairs, but many of the substances found in solution in the soil-water enter the plant also. Among these are the mineral substances which are indispensable for the proper life and growth of plants. These plant nutrients are so indispensable that if any one of them is absent, it is absolutely impossible for the plant to continue its life functions. The indispensable plant-foods gathered from the soil by the root-hairs, in addition to water, are: potassium, calcium, magnesium, iron, nitrogen, and phosphorus,—all in their proper combinations. How the plant uses these substances is yet poorly understood, but we are fairly certain that each one has some particular function in the life of the plant. For instance, nitrogen and phosphorus are probably necessary in the formation of the protein or the flesh-forming portions of the plant, while potash is especially valuable in the formation of starch.

There is a constant movement of the indispensable plant nutrients after they have entered the root-hairs, through the stems and into the leaves. This constant movement of the plant-foods depends upon the fact that the plant consumes in its growth considerable quantities of these substances, and as the plant juices are diminished in their content of particular plant-foods, more enters from the soil solution. The necessary plant-foods do not alone enter the plant but whatever may be in solution in the soil-water enters the plant in variable quantities. Nevertheless, since the plant uses only a few definite substances and leaves the unnecessary ones in solution, there is soon a cessation of the inward movement of the unimportant constituents of the soil solution. This process is often spoken of as selective absorption; that is, the plant, because of its vital activity, appears to have the power of selecting from the soil certain substances and rejecting others.

Movement of water through plant

The soil-water, holding in solution a great variety of plant nutrients, passes from the root-hairs into the adjoining cells and gradually moves from cell to cell throughout the whole plant. In many plants this stream of water does not simply pass from cell to cell, but moves through tubes that apparently have been formed for the specific purpose of aiding the movement of water through the plant. The rapidity of this current is often considerable. Ordinarily, it varies from one foot to six feet per hour, though observations are on record showing that the movement often reaches the rate of eighteen feet per hour. It is evident, then, that in an actively growing plant it does not take long for the water which is in the soil to find its way to the uppermost parts of the plant.

The work of leaves

Whether water passes upward from cell to cell or through especially provided tubes, it reaches at last the leaves, where evaporation takes place. It is necessary to consider in greater detail what takes place in leaves in order that we may more clearly understand the loss due to transpiration. One half or more of every plant is made up of the element carbon. The remainder of the plant consists of the mineral substances taken from the soil (not more than two to 10 per cent of the dry plant) and water which has been combined with the carbon and these mineral substances to form the characteristic products of plant life. The carbon which forms over half of the plant substance is gathered from the air by the leaves and it is evident that the leaves are very active agents of plant growth. The atmosphere consists chiefly of the gases oxygen and nitrogen in the proportion of one to four, but associated with them are small quantities of various other substances. Chief among the secondary constituents of the atmosphere is the gas carbon dioxid, which is formed when carbon burns, that is, when carbon unites with the oxygen of the air. Whenever coal or wood or any carbonaceous substance burns, carbon dioxid is formed. Leaves have the power of absorbing the gas carbon dioxid from the air and separating the carbon from the oxygen. The oxygen is returned to the atmosphere while the carbon is retained to be used as the fundamental substance in the construction by the plant of oils, fats, starches, sugars, protein, and all the other products of plant growth.

This important process known as carbon assimilation is made possible by the aid of countless small openings which exist chicfly on the surfaces of leaves and known as "stomata." The stomata are delicately balanced valves, exceedingly sensitive to external influences. They are more numerous on the lower side than on the upper side of plants. In fact, there is often five times more on the under side than on the upper side of a leaf. It has been estimated that 150,000 stomata or more are often found per square inch on the under side of the leaves of ordinary cultivated plants. The stomata or breathing-pores are so constructed that they may open and close very readily. In wilted leaves they are practically closed; often they also close immediately after a rain; but in strong sunlight they are usually wide open. It is through the stomata that the gases of the air enter the plant through which the discarded oxygen returns to the atmosphere.

It is also through the stomata that the water which is drawn from the soil by the roots through the stems is evaporated into the air. There is some evaporation of water from the stems and branches of plants, but it is seldom more than a thirtieth or a fortieth of the total transpiration. The evaporation of water from the leaves through the breathing-pores is the so-called transpiration, which is the greatest cause of the loss of soil-water under dry-farm conditions. It is to the prevention of this transpiration that much investigation must be given by future students of dry-farming.

Transpiration

As water evaporates through the breathing-pores from the leaves it necessarily follows that a demand is made upon the lower portions of the plant for more water. The effect of the loss of water is felt throughout the whole plant and is, undoubtedly, one of the chief causes of the absorption of water from the soil. As evaporation is diminished the amount of water that enters the plants is also diminished. Yet transpiration appears to be a process wholly necessary for plant life. The question is, simply, to what extent it may be diminished without injuring plant growth. Many students believe that the carbon assimilation of the plant, which is fundamentally important in plant growth, cannot be continued unless there is a steady stream of water passing through the plant and then evaporating from the leaves.

Of one thing we are fairly sure: if the upward stream of water is wholly stopped for even a few hours, the plant is likely to be so severely injured as to be greatly handicapped in its future growth.

Botanical authorities agree that transpiration is of value to plant growth, first, because it helps to distribute the mineral nutrients necessary for plant growth uniformly throughout the plant; secondly, because it permits an active assimilation of the carbon by the leaves; thirdly, because it is not unlikely that the heat required to evaporate water, in large part taken from the plant itself, prevents the plant from being overheated. This last mentioned value of transpiration is especially important in dry-farm districts, where, during the summer, the heat is often intense. Fourthly, transpiration apparently influences plant growth and development in a number of ways not yet clearly understood.

Conditions influencing transpiration

In general, the conditions that determine the evaporation of water from the leaves are the same as those that favor the direct evaporation of water from soils, although there seems to be something in the life process of the plant, a physiological factor, which permits or prevents the ordinary water-dissipating factors from exercising their full powers. That the evaporation of water from the soil or from a free water surface is not the same as that from plant leaves may be shown in a general way from the fact that the amount of water transpired from a given area of leaf surface may be very much larger or very much smaller than that evaporated from an equal surface of free water exposed to the same conditions. It is further shown by the fact that whereas evaporation from a free water surface goes on with little or no interruption throughout the twenty-four hours of the day, transpiration is virtually at a standstill at night even though the conditions for the rapid evaporation from a free water surface are present.

Some of the conditions influencing the transpiration may be enumerated as follows:—

First, transpiration is influenced by the relative humidity. In dry air, under otherwise similar conditions, plants transpire more water than in moist air though it is to be noted that even when the atmosphere is fully saturated, so that no water evaporates from a free water surface, the transpiration of plants still continues in a small degree. This is explained by the observation that since the life process of a plant produces a certain amount of heat, the plant is always warmer than the surrounding air and that transpiration into an atmosphere fully charged with water vapor is consequently made possible. The fact that transpiration is greater under a low relative humidity is of greatest importance to the dry-farmer who has to contend with the dry atmosphere.

Second, transpiration increases with the increase in temperature; that is, under conditions otherwise the same, transpiration is more rapid on a warm day than on a cold one. The temperature increase of itself, however, is not sufficient to cause transpiration.

Third, transpiration increases with the increase of air currents, which is to say, that on a windy day transpiration is much more rapid than on a quiet day.

Fourth, transpiration increases with the increase of direct sunlight. It is an interesting observation that even with the same relative humidity, temperature, and wind, transpiration is reduced to a minimum during the night and increases manyfold during the day when direct sunlight is available. This condition is again to be noted by the dry-farmer, for the dry-farm districts are characterized by an abundance of sunshine.

Fifth, transpiration is decreased by the presence in the soil-water of large quantities of the substances which the plant needs for its food material. This will be discussed more fully in the next section.

Sixth, any mechanical vibration of the plant seems to have some effect upon the transpiration. At times it is increased and at times it is decreased by such mechanical disturbance.

Seventh, transpiration varies also with the age of the plant. In the young plant it is comparatively small. Just before blooming it is very much larger and in time of bloom it is the largest in the history of the plant. As the plant grows older transpiration diminishes, and finally at the ripening stage it almost ceases.

Eighth, transpiration varies greatly with the crop. Not all plants take water from the soil at the same rate. Very little is as yet known about the relative water requirements of crops on the basis of transpiration. As an illustration, MacDougall has reported that sagebrush uses about one fourth as much water as a tomato plant. Even greater differences exist between other plants. This is one of the interesting subjects yet to be investigated by those who are engaged in the reclamation of dry-farm districts. Moreover, the same crop grown under different conditions varies in its rate of transpiration. For instance, plants grown for some time under arid conditions greatly modify their rate of transpiration, as shown by Spalding, who reports that a plant reared under humid conditions gave off 3.7 times as much water as the same plant reared under arid conditions. This very interesting observation tends to confirm the view commonly held that plants grown under arid conditions will gradually adapt themselves to the prevailing conditions, and in spite of the greater water dissipating conditions will live with the expenditure of less water than would be the case under humid conditions. Further, Sorauer found, many years ago, that different varieties of the same crop possess very different rates of transpiration. This also is an interesting subject that should be more fully investigated in the future.

Ninth, the vigor of growth of a crop appears to have a strong influence on transpiration. It does not follow, however, that the more vigorously a crop grows, the more rapidly does it transpire water, for it is well known that the most luxuriant plant growth occurs in the tropics, where the transpiration is exceedingly low. It seems to be true that under the same conditions, plants that grow most vigorously tend to use proportionately the smallest amount of water.

Tenth, the root system—its depth and manner of growth—influences the rate of transpiration. The more vigorous and extensive the root system, the more rapidly can water be secured from the soil by the plant.

The conditions above enumerated as influencing transpiration are nearly all of a physical character, and it must not be forgotten that they may all be annulled or changed by a physiological regulation. It must be admitted that the subject of transpiration is yet poorly understood, though it is one of the most important subjects in its applications to plant production in localities where water is scaree. It should also be noted that nearly all of the above conditions influencing transpiration are beyond the control of the farmer. The one that seems most readily controlled in ordinary agricultural practice will be discussed in the following section.

Plant-food and transpiration

It has been observed repeatedly by students of transpiration that the amount of water which actually evaporates from the leaves is varied materially by the substances held in solution by the soil-water. That is, transpiration depends upon the nature and concentration of soil solution. This fact, though not commonly applied even at the present time, has really been known for a very long time. Woodward, in 1699, observed that the amount of water transpired by a plant growing in rain water was 192.3 grams; in spring water, 163.6 grams, and in water from the River Thames, 159.5 grams; that is, the amount of water transpired by the plant in the comparatively pure rain water was nearly 20 per cent higher than that used by the plant growing in the notoriously impure water of the River Thames. Sachs, in 1859, carried on an elaborate series of experiments on transpiration in which he showed that the addition of potassium nitrate, ammonium sulphate or common salt to the solution in which plants grew reduced the transpiration; in fact, the reduction was large, varying from 10 to 75 per cent. This was confirmed by a number of later workers, among them, for instance, Buergerstein, who, in 1875, showed that whenever acids were added to a soil or to water in which plants are growing, the transpiration is increased greatly; but when alkalies of any kind are added, transpiration decreases. This is of special interest in the development of dry-farming, since dry-farm soils, as a rule, contain more substances that may be classed as alkalies than do soils maintained under humid conditions. Sour soils are very characteristic of districts where the rainfall is abundant; the vegetation growing on such soils transpires excessively and the crops are consequently more subject to drouth.

The investigators of almost a generation ago also determined beyond question that whenever a complete nutrient solution is presented to plants, that is, a solution containing all the necessary plant-foods in the proper proportions, the transpiration is reduced immensely. It is not necessary that the plant-foods should be presented in a water solution in order to effect this reduction in transpiration; if they are added to the soil on which plants are growing, the same effect will result. The addition of commercial fertilizers to the soil will therefore diminish transpiration. It was further discovered nearly half a century ago that similar plants growing on different soils evaporate different amounts of water from their leaves; this difference, undoubtedly, is due to the conditions in the fertility of the soils, for the more fertile a soil is, the richer will the soil-water be in the necessary plant-foods. The principle that transpiration or the evaporation of water from the plants depends on the nature and concentration of the soil solution is of far-reaching importance in the development of a rational practice of dry-farming.

Transpiration for a pound of dry matter

Is plant growth proportional to transpiration? Do plants that evaporate much water grow more rapidly than those that evaporate less? These questions arose very early in the period characterized by an active study of transpiration. If varying the transpiration varies the growth, there would be no special advantage in reducing the transpiration. From an economic point of view the important question is this: Does the plant when its rate of transpiration is reduced still grow with the same vigor? If that be the case, then every effort should be made by the farmer to control and to diminish the rate of transpiration.

One of the very earliest experiments on transpiration, conducted by Woodward in 1699, showed that it required less water to produce a pound of dry matter if the soil solution were of the proper concentration and contained the elements necessary for plant growth. Little more was done to answer the above questions for over one hundred and fifty years. Perhaps the question was not even asked during this period, for scientific agriculture was just coming into being in countries where the rainfall was abundant. However, Tschaplowitz, in 1878, investigated the subject and found that the increase in dry matter is greatest when the transpiration is the smallest. Sorauer, in researches conducted from 1880 to 1882, determined with almost absolute certainty that less water is required to produce a pound of dry matter when the soil is fertilized than when it is not fertilized. Moreover, he observed that the enriching of the soil solution by the addition of artificial fertilizers enabled the plant to produce dry matter with less water. He further found that if a soil is properly tilled so as to set free plant-food and in that way to enrich the soil solution the water-cost of dry plant substance is decreased. Hellriegel, in 1883, confirmed this law and laid down the law that poor plant nutrition increases the water-cost of every pound of dry matter produced. It was about this time that the Rothamsted Experiment Station reported that its experiments had shown that during periods of drouth the well-tilled and well-fertilized fields yielded good crops, while the unfertilized fields yielded poor crops or crop failures—indicating thereby, since rainfall was the critical factor, that the fertility of the soil is important in determining whether or not with a small amount of water a good crop can be produced. Pagnoul, working in 1895 with fescue grass, arrived at the same conclusion. On a poor clay soil it required 1109 pounds of water to produce one pound of dry matter, while on a rich calcareous soil only 574 pounds were required. Gardner of the United States Department of Agriculture, Bureau of Soils, working in 1908, on the manuring of soils, came to the conclusion that the more fertile the soil the less water is required to produce a pound of dry matter. He incidentally called attention to the fact that in countries of limited rainfall this might be a very important principle to apply in crop production. Hopkins in his study of the soils of Illinois has repeatedly observed, in connection with certain soils, that where the land is kept fertile, injury from drouth is not common, implying thereby that fertile soils will produce dry matter at a lower water-cost. The most recent experiments on this subject, conducted by the Utah Station, confirm these conclusions. The experiments, which covered several years, were conducted in pots filled with different soils. On a soil, naturally fertile, 908 pounds of water were transpired for each pound of dry matter (corn) produced; by adding to this soil an ordinary dressing of manure' this was reduced to 613 pounds, and by adding a small amount of sodium nitrate it was reduced to 585 pounds. If so large a reduction could be secured in practice, it would seem to justify the use of commercial fertilizers in years when the dry-farm year opens with little water stored in the soil. Similar results, as will be shown below, were obtained by the use of various cultural methods. It may therefore, be stated as a law, that any cultural treatment which enables the soil-water to acquire larger quantities of plant-food also enables the plant to produce dry matter with the use of a smaller amount of water. In dry-farming, where the limiting factor is water, this principle must he emphasized in every cultural operation.

Methods of controlling transpiration

It would appear that at present the only means possessed by the farmer for controlling transpiration and making possible maximum crops with the minimum amount of water in a properly tilled soil is to keep the soil as fertile as is possible. In the light of this principle the practices already recommended for the storing of water and for the prevention of the direct evaporation of water from the soil are again emphasized. Deep and frequent plowing, preferably in the fall so that the weathering of the winter may be felt deeply and strongly, is of first importance in liberating plant-food. Cultivation which has been recommended for the prevention of the direct evaporation of water is of itself an effective factor in setting free plant-food and thus in reducing the amount of water required by plants. The experiments at the Utah Station, already referred to, bring out very strikingly the value of cultivation in reducing the transpiration. For instance, in a series of experiments the following results were obtained. On a sandy loam, not cultivated, 603 pounds of water were transpired to produce one pound of dry matter of corn; on the same soil, cultivated, only 252 pounds were required. On a clay loam, not cultivated, 535 pounds of water were transpired for each pound of dry matter, whereas on the cultivated soil only 428 pounds were necessary. On a clay soil, not cultivated, 753 pounds of water were transpired for each pound of dry matter; on the cultivated soil, only 582 pounds. The farmer who faithfully cultivates the soil throughout the summer and after every rain has therefore the satisfaction of knowing that he is accomplishing two very important things: he is keeping the moisture in the soil, and he is making it possible for good crops to be grown with much less water than would otherwise be required. Even in the case of a peculiar soil on which ordinary cultivation did not reduce the direct evaporation, the effect upon the transpiration was very marked. On the soil which was not cultivated, 451 pounds of water were required to produce one pound of dry matter (corn), while on the cultivated soils, though the direct evaporation was no smaller, the number of pounds of water for each pound of dry substance was as low as 265.

One of the chief values of fallowing lies in the liberation of the plant-food during the fallow year, which reduces the quantity of water required the next year for the full growth of crops. The Utah experiments to which reference has already been made show the effect of the previous soil treatment upon the water requirements of crops. One half of the three types of soil had been cropped for three successive years, while the other half had been left bare. During the fourth year both halves were planted to corn. For the sandy loam it was found that, on the part that had been cropped previously, 659 pounds of water were required for each pound of dry matter produced, while on the part that had been bare only 573 pounds were required. For the clay loam 889 pounds on the cropped part and 550 on the previously bare part were required for each pound of dry matter. For the clay 7466 pounds on the cropped part and 1739 pounds on the previously bare part were required for each pound of dry matter. These results teach clearly and emphatically that the fertile condition of the soil induced by fallowing makes it possible to produce dry matter with a smaller amount of water than can be done on soils that are cropped continuously. The beneficial effects of fallowing are therefore clearly twofold: to store the moisture of two seasons for the use of one crop; and to set free fertility to enable the plant to grow with the least amount of water. It is not yet fully understood what changes occur in fallowing to give the soil the fertility which reduces the water needs of the plant. The researches of Atkinson in Montana, Stewart and Graves in Utah, and Jensen in South Dakota make it seem probable that the formation of nitrates plays an important part in the whole process. If a soil is of such a nature that neither careful, deep plowing at the right time nor constant crust cultivation are sufficient to set free an abundance of plant-food, it may be necessary to apply manures or commercial fertilizers to the soil. While the question of restoring soil fertility has not yet come to be a leading one in dry-farming, yet in view of what has been said in this chapter it is not impossible that the time will come when the farmers must give primary attention to soil fertility in addition to the storing and conservation of soil-moisture. The fertilizing of lands with proper plant-foods, as shown in the last sections, tends to check transpiration and makes possible the production of dry matter at the lowest water-cost.

The recent practice in practically all dry-farm districts, at least in the intermountain and far West, to use the header for harvesting bears directly upon the subject considered in this chapter. The high stubble which remains contains much valuable plant-food, often gathered many feet below the surface by the plant roots. When this stubble is plowed under there is a valuable addition of the plant-food to the upper soil. Further, as the stubble decays, acid substances are produced that act upon the soil grains to set free the plant-food locked up in them. The plowing under of stubble is therefore of great value to the dry-farmer. The plowing under of any other organic substance has the same effect. In both cases fertility is concentrated near the surface, which dissolves in the soil-water and enables the crop to mature with the Ieast quantity of water.

The lesson then to be learned from this chapter is, that it is not aufficient for the dry-farmer to store an abundance of water in the soil and to prevent that water from evaporating directly from the soil; but the soil must be kept in such a state of high fertility that plants are enabled to utilize the stored moisture in the most economical manner. Water storage, the prevention of evaporation, and the maintenance of soil fertility go hand in hand in the development of a successful system of farming without irrigation.



CHAPTER X

PLOWING AND FALLOWING



The soil treatment prescribed in the preceding chapters rests upon (1) deep and thorough plowing, done preferably in the fall; (2) thorough cultivation to form a mulch over the surface of the land, and (3) clean summer fallowing every other year under low rainfall or every third or fourth year under abundant rainfall.

Students of dry-farming all agree that thorough cultivation of the topsoil prevents the evaporation of soil-moisture, but some have questioned the value of deep and fall plowing and the occasional clean summer fallow. It is the purpose of this chapter to state the findings of practical men with reference to the value of plowing and fallowing in producing large crop yields under dry-farm conditions.

It will be shown in Chapter XVIII that the first attempts to produce crops without irrigation under a limited rainfall were made independently in many diverse places. California, Utah, and the Columbia Basin, as far as can now be learned, as well as the Great Plains area, were all independent pioneers in the art of dry-farming. It is a most significant fact that these diverse localities, operating under different conditions as to soil and climate, have developed practically the same system of dry-farming. In all these places the best dry-farmers practice deep plowing wherever the subsoil will permit it; fall plowing wherever the climate will permit it; the sowing of fall grain wherever the winters will permit it, and the clean summer fallow every other year, or every third or fourth year. H. W. Campbell, who has been the leading exponent of dry-farming in the Great Plains area, began his work without the clean summer fallow as a part of his system, but has long since adopted it for that section of the country. It is scarcely to be believed that these practices, developed laboriously through a long succession of years in widely separated localities, do not rest upon correct scientific principles. In any case, the accumulated experience of the dry-farmers in this country confirms the doctrines of soil tillage for dry-farms laid down in the preceding chapters.

At the Dry-Farming Congresses large numbers of practical farmers assemble for the purpose of exchanging experiences and views. The reports of the Congress show a great difference of opinion on minor matters and a wonderful unanimity of opinion on the more fundamental questions. For instance, deep plowing was recommended by all who touched upon the subject in their remarks; though one farmer, who lived in a locality the subsoil of which was very inert, recommended that the depth of plowing should be increased gradually until the full depth is reached, to avoid a succession of poor crop years while the lifeless soil was being vivified. The states of Utah, Montana, Wyoming, South Dakota, Colorado, Kansas, Nebraska, and the provinces of Alberta and Saskatchewan of Canada all specifically declared through one to eight representatives from each state in favor of deep plowing as a fundamental practice in dry-farming. Fall plowing, wherever the climatic conditions make it possible, was similarly advocated by all the speakers. Farmers in certain localities had found the soil so dry in the fall that plowing was difficult, but Campbell insisted that even in such places it would be profitable to use power enough to break up the land before the winter season set in. Numerous speakers from the states of Utah, Wyoming, Montana, Nebraska, and a number of the Great Plains states, as well as from the Chinese Empire, declared themselves as favoring fall plowing. Scareely a dissenting voice was raised.

In the discussion of the clean summer fallow as a vital principle of dry-farming a slight difference of opinion was discovered. Farmers from some of the localities insisted that the clean summer fallow every other year was indispensable; others that one in three years was sufficient; and others one in four years, and a few doubtful the wisdom of it altogether. However, all the speakers agreed that clean and thorough cultivation should be practiced faithfully during the spring, and fall of the fallow year. The appreciation of the fact that weeds consume precious moisture and fertility seemed to be general among the dry-farmers from all sections of the country. The following states, provinces, and countries declared themselves as being definitely and emphatically in favor of clean summer fallowing:

California, Utah, Nevada, Washington, Montana, Idaho, Colorado, New Mexico, North Dakota, Nebraska, Alberta, Saskatchewan, Russia, Turkey, the Transvaal, Brazil, and Australia. Each of these many districts was represented by one to ten or more representatives. The only state to declare somewhat vigorously against it was from the Great Plains area, and a warning voice was heard from the United States Department of Agriculture. The recorded practical experience of the farmers over the whole of the dry-farm territory of the United States leads to the conviction that fallowing must he accepted as a practice which resulted in successful dry-farming. Further, the experimental leaders in the dry-farm movement, whether working under private, state, or governmental direction, are, with very few exceptions, strongly in favor of deep fall plowing and clean summer fallowing as parts of the dry-farm system.

The chief reluctance to accept clean summer fallowing as a principle of dry-farming appears chicfly among students of the Great Plains area. Even there it is admitted by all that a wheat crop following a fallow year is larger and better than one following wheat. There seem, however, to be two serious reasons for objecting to it. First, a fear that a clean summer fallow, practiced every second, third, or fourth year, will cause a large diminution of the organic matter in the soil, resulting finally in complete crop failure; and second, a belief that a hoed crop, like corn or potatoes, exerts the same beneficial effect.

It is undoubtedly true that the thorough tillage involved in dry-farming exposes to the action of the elements the organic matter of the soil and thereby favors rapid oxidation. For that reason the different ways in which organic matter may be supplied regularly to dry-farms are pointed out in Chapter XIV. It may also be observed that the header harvesting system employed over a large part of the dry-farm territory leaves the large header stubble to be plowed under, and it is probable that under such methods more organic matter is added to the soil during the year of cropping than is lost during the year of fallowing. It may, moreover, be observed that thorough tillage of a crop like corn or potatoes tends to cause a loss of the organic matter of the soil to a degree nearly as large as is the case when a fallow field is well cultivated. The thorough stirring of the soil under an arid or semiarid climate, which is an essential feature of dry-farming, will always result in a decrease in organic matter. It matters little whether the soil is fallow or in crop during the process of cultivation, so far as the result is concerned.

A serious matter connected with fallowing in the Great Plains area is the blowing of the loose well-tilled soil of the fallow fields, which results from the heavy winds that blow so steadily over a large part of the western slope of the Mississippi Valley. This is largely avoided when crops are grown on the land, even when it is well tilled.

The theory, recently proposed, that in the Great Plains area, where the rains come chicfly in summer, the growing of hoed crops may take the place of the summer fallow, is said to be based on experimental data not yet published. Careful and conscientious experimenters, as Chilcott and his co-laborers, indicate in their statements that in many cases the yields of wheat, after a hoed crop, have been larger than after a fallow year. The doctrine has, therefore, been rather widely disseminated that fallowing has no place in the dry-farming of the Great Plains area and should be replaced by the growing of hoed crops. Chilcott, who is the chief exponent of this doctrine, declares, however, that it is only with spring-grown crops and for a succession of normal years that fallowing may be omitted, and that fallowing must be resorted to as a safeguard or temporary expedient to guard against total loss of crop where extreme drouth is anticipated; that is, where the rainfall falls below the average. He further explains that continuous grain cropping, even with careful plowing and spring and fall tillage, is unsuccessful; but holds that certain rotations of crops, including grain and a hoed crop every other year, are often more profitable than grain alternating with clean summer fallow. He further believes that the fallow year every third or fourth year is sufficient for Great Plains conditions. Jardine explains that whenever fall grain is grown in the Great Plains area, the fallow is remarkably helpful, and in fact because of the dry winters is practically indispensable.

This latter view is confirmed by the experimental results obtained by Atkinson and others at the Montana Experiment Stations, which are conducted under approximately Great Plains conditions.

It should be mentioned also that in Saskatchewan, in the north end of the Great Plains area, and which is characteristic, except for a lower annual temperature, of the whole area, and where dry-farming has been practiced for a quarter of a century, the clean summer fallow has come to be an established practice.

This recent discussion of the place of fallowing in the agriculture of the Great Plains area illustrates what has been said so often in this volume about the adapting of principles to local conditions. Wherever the summer rainfall is sufficient to mature a crop, fallowing for the purpose of storing moisture in the soil is unnecessary; the only value of the fallow year under such conditions would be to set free fertility. In the Great Plains area the rainfall is somewhat higher than elsewhere in the dry-farm territory and most of it comes in summer; and the summer precipitation is probably enough in average years to mature crops, providing soil conditions are favorable. The main considerations, then, are to keep the soils open for the reception of water and to maintain the soils in a sufficiently fertile condition to produce, as explained in Chapter IX, plants with a minimum amount of water. This is accomplished very largely by the year of hoed crop, when the soil is as well stirred as under a clean fallow.

The dry-farmer must never forget that the critical element in dry-farming is water and that the annual rainfall will in the very nature of things vary from year to year, with the result that the dry year, or the year with a precipitation below the average, is sure to come. In somewhat wet years the moisture stored in the soil is of comparatively little consequence, but in a year of drouth it will be the main dependence of the farmer. Now, whether a crop be hoed or not, it requires water for its growth, and land which is continuously cropped even with a variety of crops is likely to be so largely depleted of its moisture that, when the year of drouth comes, failure will probably result.

The precariousness of dry-farming must be done away with. The year of drouth must be expected every year. Only as certainty of crop yield is assured will dry-farming rise to a respected place by the side of other branches of agriculture. To attain such certainty and respect clean summer fallowing every second, third, or fourth year, according to the average rainfall, is probably indispensable; and future investigations, long enough continued, will doubtless confirm this prediction. Undoubtedly, a rotation of crops, including hoed crops, will find an important place in dry-farming, but probably not to the complete exclusion of the clean summer fallow.

Jethro Tull, two hundred years ago, discovered that thorough tillage of the soil gave crops that in some cases could not be produced by the addition of manure, and he came to the erroneous conclusion that "tillage is manure." In recent days we have learned the value of tillage in conserving moisture and in enabling plants to reach maturity with the least amount of water, and we may be tempted to believe that "tillage is moisture." This, like Tull's statement, is a fallacy and must be avoided. Tillage can take the place of moisture only to a limited degree. Water is the essential consideration in dry-farming, else there would be no dry-farming.



CHAPTER XI

SOWING AND HARVESTING



The careful application of the principles of soil treatment discussed in the preceding chapters will leave the soil in good condition for sowing, either in the fall or spring. Nevertheless, though proper dry-farming insures a first-class seed-bed, the problem of sowing is one of the most difficult in the successful production of crops without irrigation. This is chiefly due to the difficulty of choosing, under somewhat rainless conditions, a time for sowing that will insure rapid and complete germination and the establishmcnt of a root system capable of producing good plants. In some respects fewer definite, reliable principles can be laid down concerning sowing than any other principle of important application in the practice of dry-farming. The experience of the last fifteen years has taught that the occasional failures to which even good dry-farmers have been subjected have been caused almost wholly by uncontrollable unfavorable conditions prevailing at the time of sowing.

Conditions of germination

Three conditions determine germination: (1) heat, (2) oxygen, and (3) water. Unless these three conditions are all favorable, seeds cannot germinate properly. The first requisite for successful seed germination is a proper degree of heat. For every kind of seed there is a temperature below which germination does not occur; another, above which it does not occur, and another, the best, at which, providing the other factors are favorable, germination will go on most rapidly. The following table, constructed by Goodale, shows the latest, highest, and best germination temperatures for wheat, barley, and corn. Other seeds germinate approximately within the same ranges of temperature:—

Germination Temperatures (Degrees Farenheit)

Lowest Highest Best Wheat 41 108 84 Barley 41 100 84 Corn 49 115 91

Germination occurs within the considerable range between the highest and lowest temperatures of this table, though the rapidity of germination decreases as the temperature recedes from the best. This explains the early spring and late fall germination when the temperature is comparatively low. If the temperature falls below the lowest required for germination, dry seeds are not injured, and even a temperature far below the freezing point of water will not affect seeds unfavorably if they are not too moist. The warmth of the soil, essential to germination, cannot well be controlled by the farmer; and planting must, therefore, be done in seasons when, from past experience, it is probable that the temperature is and will remain in the neighborhood of the best degree for germination. More heat is required to raise the temperature of wet soils; therefore, seeds will generally germinate more slowly in wet than in dry soils, as is illustrated in the rapid germination often observed in well-tilled dry-farm soils. Consequently, it is safer at a low temperature to sow in dry soils than in wet ones. Dark soils absorb heat more rapidly than lighter colored ones, and under the same conditions of temperature germination is therefore more likely to go on rapidly in dark colored soils. Over the dry-farm territory the soils are generally light colored, which would tend to delay germination. The incorporation of organic matter with the soil, which tends to darken the soil, has a slight though important bearing on germination as well as on the general fertility of the soil, and should be made an important dry-farm practice. Meanwhile, the temperature of the soil depends almost wholly upon the prevailing temperature conditions in the district and is not to any material degree under the control of the farmer.

A sufficient supply of oxygen in the soil is indispensable to germination. Oxygen, as is well known, forms about one fifth of the atmosphere and is the active principle in combustion and in tile changes in the animal body occasioned by respiration. Oxygen should be present in the soil air in approximately the proportion in which it is found in the atmosphere. Germination is hindered by a larger or smaller proportion than is found in the atmosphere. The soil must be in such a condition that the air can easily enter or leave the upper soil layer; that is, the soil must be somewhat loose. In order that the seeds may have access to the necessary oxygen, then, sowing should not be done in wet or packed soils, nor should the sowing implements be such as to press the soil too closely around the seeds. Well-fallowed soil is in an ideal condition for admitting oxygen.

If the temperature is right, germination begins by the forcible absorption of water by the seed from the surrounding soil. The force of this absorption is very great, ranging from four hundred to five hundred pounds per square inch, and continues until the seed is completely saturated. The great vigor with which water is thus absorbed from the soil explains how seeds are able to secure the necessary water from the thin water film surrounding the soil grains. The following table, based upon numerous investigations conducted in Germany and in Utah, shows the maximum percentages of water contained by seeds when the absorption is complete. These quantities are reached only when water is easily accessible:—

Percentage of Water contained by Seeds at Saturation

German Utah Rye 58 — Wheat 57 52 Oats 58 43 Barley 56 44 Corn 44 57 Beans 95 88 Lucern 78 67

Germination itself does not go on freely until this maximum saturation has been reached. Therefore, if the moisture in the soil is low, the absorption of water is made difficult and germination is retarded. This shows itself in a decreased percentage of germination. The effect upon germination of the percentage of water in the soil is well shown by some of the Utah experiments, as follows:—

Effect of Varying Amounts of Water on Percentage of Germination

Percent water in soil 7.5 10 12.5 15 17.5 20 22.5 25 Wheat in sandy loam 0.0 98 94 86 82 82 82 6 Wheat in clay 30 48 84 94 84 82 86 58 Beans in sandy loam 0 0 20 46 66 18 8 9 Beans in clay 0 0 6 20 22 32 30 36 Lucern in Sandy loam 0 18 68 54 54 8 8 9 Lucern in clay 8 8 54 48 50 32 15 14

In a sandy soil a small percentage of water will cause better germination than in a clay soil. While different seeds vary in their power to abstract water from soils, yet it seems that for the majority of plants, the best percentage of soil-water for germination purposes is that which is in the neighborhood of the maximum field capacity of soils for water, as explained in Chapter VII. Bogdanoff has estimated that the best amount of water in the soil for germination purposes is about twice the maximum percentage of hygroscopic water. This would not be far from the field-water capacity as described in the preceding chapter.

During the absorption of water, seeds swell considerably, in many cases from two to three times their normal size. This has the very desirable effect of crowding the seed walls against the soil particles and thus, by establishing more points of contact, enabling the seed to absorb moisture with greater facility. As seeds begin to absorb water, heat is also produced. In many cases the temperature surrounding the seeds is increased one degree on the Centigrade scale by the mere process of water absorption. This favors rapid germination. Moreover, the fertility of the soil has a direct influence upon germination. In fertile soils the germination is more rapid and more complete than in infertile soils. Especially active in favoring direct germination are the nitrates. When it is recalled that the constant cultivation and well-kept summer fallow of dry-farming develop large quantities of nitrates in the soil, it will be understood that the methods of dry-farming as already outlined accelerate germination very greatly.

It scareely need be said that the soil of the seed-bed should be fine, mellow, and uniform in physical texture so that the seeds can be planted evenly and in close contact with the soil particles. All the requisite conditions for germination are best met by the conditions prevailing in a well-kept summer fallowed soil.

Time to sow

In the consideration of the time to sow, the first question to be disposed of by the dry-farmer is that of fall as against spring sowing. The small grains occur as fall and spring varieties, and it is vitally important to determine which season, under dry-farm conditions, is the best for sowing.

The advantages of fall sowing are many. As stated, successful germination is favored by the presence of an abundance of fertility, especially of nitrates, in the soil. In summer-fallowed land nitrates are always found in abundance in the fall, ready to stimulate the seed into rapid germination and the young plants into vigorous growth. During the late fall and winter months the nitrates disappear, at least in part, anti from the point of view of fertility the spring is not so desirable as the fall for germination. More important, grain sown in the fall under favorable conditions will establish a good root system which is ready for use and in action in the early spring as soon as the temperature is right and long before the farmer can go out on the ground with his implements. As a result, the crop has the use of the early spring moisture, which under the conditions of spring sowing is evaporated into the air. Where the natural precipitation is light and the amount of water stored in the soil is not large, the gain resulting from the use of the early spring moisture. often decides the question in favor of fall sowing.

The disadvantages of fall sowing are also many. The uncertainty of the fall rains must first be considered. In ordinary practice, seed sown in the fall does not germinate until a rain comes, unless indeed sowing is done immediately after a rain. The fall rains are uncertain as to quantity. In many cases they are so light that they suffice only to start germination and not to complete it and give the plants the proper start. Such incomplete germination frequently causes the total loss of the crop. Even if the stand of the fall crop is satisfactory, there is always the danger of winter-killing to be reckoned with. The real cause of winter-killing is not yet clearly understood, though it seems that repeated thawing and freezing, drying winter winds, accompanied by dry cold or protracted periods of intense cold, destroy the vitality of the seed and young root system. Continuous but moderate cold is not ordinarily very injurious. The liability to winter-killing is, therefore, very much greater wherever the winters are open than in places where the snow covers the ground the larger part of the winter. It is also to be kept in mind that some varieties are very resistant to winter-killing, while others require well-covered winters. Fall sowing is preferable wherever the bulk of the precipitation comes in winter and spring and where the winters are covered for some time with snow and the summers are dry. Under such conditions it is very important that the crop make use of the moisture stored in the soil in the early spring. Wherever the precipitation comes largely in late spring and summer, the arguments in favor of fall sowing are not so strong, and in such localities spring sowing is often more desirable than fall sowing. In the Great Plains district, therefore, spring sowing is usually recommended, though fall-sown crops nearly always, even there, yield the larger crops. In the intermountain states, with wet winters and dry summers, fall sowing has almost wholly replaced spring sowing. In fact, Farrell reports that upon the Nephi (Utah) substation the average of six years shows about twenty bushels of wheat from fall-sown seed as against about thirteen bushels from spring-sown seed. Under the California climate, with wet winters and a winter temperature high enough for plant growth, fall sowing is also a general practice. Wherever the conditions are favorable, fall sowing should be practiced, for it is in harmony with the best principles of water conservation. Even in districts where the precipitation comes chiefly in the summer, it may be found that fall sowing, after all, is preferable.

The right time to sow in the fall can be fixed only with great difficulty, for so much depends upon the climatic conditions. In fact the practice varies in accordance with differences in fall precipitation and early fall frosts. Where numerous fall rains maintain the soil in a fairly moist condition and the temperature is not too low, the problem is comparatively simple. In such districts, for latitudes represented by the dry-farm sections of the United States, a good time for fall planting is ordinarily from the first of September to the middle of October. If sown much earlier in such districts, the growth is likely to be too rank and subject to dangerous injury by frosts, and as suggested by Farrell the very large development of the root system in the fall may cause, the following summer, a dangerously large growth of foliage; that is, the crop may run to straw at the expense of the grain. If sown much later, the chances are that the crop will not possess sufficient vitality to withstand the cold of late fall and winter. In localities where the late summer and the early fall are rainless, it is much more difficult to lay down a definite rule covering the time of fall sowing. The dry-farmers in such places usually sow at any convenient time in the hope that an early rain will start the process of germination and growth. In other cases planting is delayed until the arrival of the first fall rain. This is an certain and usually unsatisfactory practice, since it often happens that the sowing is delayed until too late in the fall for the best results.

In districts of dry late summer and fall, the greatest danger in depending upon the fall rains for germination lies in the fact that the precipitation is often so small that it initiates germination without being sufficient to complete it. This means that when the seed is well started in germination, the moisture gives out. When another slight rain comes a little later, germination is again started and possibly again stopped. In some seasons this may occur several times, to the permanent injury of the crop. Dry-farmers try to provide against this danger by using an unusually large amount of seed, assuming that a certain amount will fail to come up because of the repeated partial germinations. A number of investigators have demonstrated that a seed may start to germinate, then be dried, and again be started to germinate several times in succession without wholly destroying the vitality of the seed.

In these experiments wheat and other seeds were allowed to germinate and dry seven times in succession. With each partial germination the percentage of total germination decreased until at the seventh germination only a few seeds of wheat, barley, and oats retained their power. This, however, is practically the condition in dry-farm districts with rainless summers and falls, where fall seeding is practiced. In such localities little dependence should be placed on the fall rains and greater reliance placed on a method of soil treatment that will insure good germination. For this purpose the summer fallow has been demonstrated to be the most desirable practice. If the soil has been treated according to the principles laid down in earlier chapters, the fallowed land will, in the fall, contain a sufficient amount of moisture to produce complete germination though no rains may fall. Under such conditions the main consideration is to plant the seed so deep that it may draw freely upon the stored soil-moisture. This method makes fall germination sure in districts where the natural precipitation is not to be depended upon.

When sowing is done in the spring, there are few factors to consider. Whenever the temperature is right and the soil has dried out sufficiently so that agricultural implements may be used properly, it is usually safe to begin sowing. The customs which prevail generally with regard to the time of spring sowing may be adopted in dry-farm practices also.

Depth of seeding

The depth to which seed should be planted in the soil is of importance in a system of dry-farming. The reserve materials in seeds are used to produce the first roots and the young plants. No new nutriment beyond that stored in the soil can be obtained by the plant until the leaves are above the ground able to gather Carleton from the atmosphere. The danger of deep planting lies, therefore, in exhausting the reserve materials of the seeds before the plant has been able to push its leaves above the ground. Should this occur, the plant will probably die in the soil. On the other hand, if the seed is not planted deeply enough, it may happen that the roots cannot be sent down far enough to connect with the soil-water reservoir below. Then, the root system will not be strong and deep, but will have to depend for its development upon the surface water, which is always a dangerous practice in dry-farming. The rule as to the depth of seeding is simply: Plant as deeply as is safe. The depth to which seeds may be safely placed depends upon the nature of the soil, its fertility, its physical condition, and the water that it contains. In sandy soils, planting may be deeper than in clay soils, for it requires less energy for a plant to push roots, stems, and leaves through the loose sandy soil than through the more compact clay soil; in a dry soil planting may be deeper than in wet soils; likewise, deep planting is safer in a loose soil than in one firmly compacted; finally, where the moist soil is considerable distance below the surface, deeper planting may be practiced than when the moist soil is near the surface. Countless experiments have been conducted on the subject of depth of seeding. In a few cases, ordinary agricultural seeds planted eight inches deep have come up and produced satisfactory plants. However, the consensus of opinion is that from one to three inches are best in humid districts, but that, everything considered, four inches is the best depth under dry-farm conditions. Under a low natural precipitation, where the methods of dry-farming are practiced, it is always safe to plant deeply, for such a practice will develop and strengthen the root system, which is one big step toward successful dry-farming.

Quantity to sow

Numerous dry-farm failures may be charged wholly to ignorance concerning the quantity of seed to sow. In no other practice has the custom of humid countries been followed more religiously by dry-farmers, and failure has nearly always resulted. The discussions in this volume have brought out the fact that every plant of whatever character requires a large amount of water for its growth. From the first day of its growth to the day of its maturity, large amounts of water are taken from the soil through the plant and evaporated into the air through the leaves. When the large quantities of seed employed in humid countries have been sown on dry lands, the result has usually been an excellent stand early in the season, with a crop splendid in appearance up to early summer. .A luxuriant spring crop reduces, however, the water content of the soil so greatly that when the heat of the summer arrives, there is not sufficient water left in the soil to support the final development and ripening. A thick stand in early spring is no assurance to the dry-farmer of a good harvest. On the contrary, it is usually the field with a thin stand in spring that stands up best through the summer and yields most at the time of harvest. The quantity of seed sown should vary with the soil conditions: the more fertile the soil is, the more seed may be used; the more water in the soil, the more seed may be sown; as the fertility or the water content diminishes, the amount of seed should likewise be diminished. Under dry-farm conditions the fertility is good, but the moisture is low. As a general principle, therefore, light seeding should be practiced on dry-farms, though it should be sufficient to yield a crop that will shade the ground well. If the sowing is done early, in fall or spring, less seed may be used than if the sowing is late, because the early sowing gives a better chance for root development, which results, ordinarily, in more vigorous plants that consume more moisture than the smaller and weaker plants of later sowing. If the winters are mild and well covered with snow, less seed may be used than in districts where severe or open winters cause a certain amount of winter-killing. On a good seed-bed of fallowed soil less seed may be used than where the soil has not been carefully tilled and is somewhat rough and lumpy and unfavorable for complete germination. The yield of any crop is not directly proportional to the amount sown, unless all factors contributing to germination are alike. In the case of wheat and other grains, thin seeding also gives a plant a better chance for stooling, which is Nature's method of adapting the plant to the prevailing moisture and fertility conditions. When plants are crowded, stooling cannot occur to any marked degree, and the crop is rendered helpless in attempts to adapt itself to surrounding conditions.

In general the rule may be laid down that a little more than one half as much seed should be used in dry-farm districts with an annual rainfall of about fifteen inches than is used in humid districts. That is, as against the customary five pecks of wheat used per acre in humid countries about three pecks or even two pecks should be used on dry-farms. Merrill recommends the seeding of oats at the rate of about three pecks per acre; of barley, about three pecks; of rye, two pecks; of alfalfa, six pounds; of corn, two kernels to the hill, and other crops in the same proportion. No invariable rule can be laid down for perfect germination. A small quantity of seed is usually sufficient; but where germination frequently fails in part, more seed must be used. If the stand is too thick at the beginning of the growing season, it must be harrowed out. Naturally, the quantity of seed to be used should be based on the number of kernels as well as on the weight. For instance, since the larger the individual wheat kernels the fewer in a bushel, fewer plants would be produced from a bushel of large than from a bushel of small seed wheat. The size of the seed in determining the amount for sowing is often important and should be determined by some simple method, such as counting the seeds required to fill a small bottle.

Method of sowing

There should really be no need of discussing the method of sowing were it not that even at this day there are farmers in the dry-farm district who sow by broadcasting and insist upon the superiority of this method. The broadcasting of seed has no place in any system of scientific agriculture, least of all in dry-farming, where success depends upon the degree with which all conditions are controlled. In all good dry-farm practice seed should be placed in rows, preferably by means of one of the numerous forms of drill seeders found upon the market. The advantages of the drill are almost self-evident. It permits uniform distribution of the seed, which is indispensable for success on soils that receive limited rainfall. The seed may be placed at an even depth, which is very necessary, especially in fall sowing, where the seed depends for proper germination upon the moisture already stored in the soil. The deep seeding often necessary under dry-farm conditions makes the drill indispensable. Moreover, Hunt has explained that the drill furrows themselves have definite advantages. During the winter the furrows catch the snow, and because of the protection thus rendered, the seed is less likely to be heaved out by repeated freezing and thawing. The drill furrow also protects to a certain extent against the drying action of winds and in that way, though the furrows are small, they aid materially in enabling the young plant to pass through the winter successfully. The rains of fall and spring are accumulated in the furrows and made easily accessible to plants. Moreover, many of the drills have attachments whereby the soil is pressed around the seed and the topsoil afterwards stirred to prevent evaporation. This permits of a much more rapid and complete germination. The drill, the advantages of which were taught two hundred years ago by Jethro Tull, is one of the most valuable implements of modern agriculture. On dry-farms it is indispensable. The dry-farmer should make a careful study of the drills on the market and choose such as comply with the principles of the successful prosecution of dry-farming. Drill culture is the only method of sowing that can be permitted if uniform success is desired.

The care of the crop

Excepting the special treatment for soil-moisture conservation, dry-farm crops should receive the treatment usually given crops growing under humid conditions. The light rains that frequently fall in autumn sometimes form a crust on the top of the soil, which hinders the proper germination and growth of the fall-sown crop. It may be necessary, therefore, for the farmer to go over the land in the fall with a disk or more preferably with a corrugated roller.

Ordinarily, however, after fall sowing there is no further need of treatment until the following spring. The spring treatment is of considerably more importance, for when the warmth of spring and early summer begins to make itself felt, a crust forms over many kinds of dry-farm soils. This is especially true where the soil is of the distinctively arid kind and poor in organic matter. Such a crust should be broken early in order to give the young plants a chance to develop freely. This may be accomplished, as above stated, by the use of a disk, corrugated roller, or ordinary smoothing harrow.

When the young grain is well under way, it may be found to be too thick. If so, the crop may be thinned by going over the field with a good irontooth harrow with the teeth so set as to tear out a portion of the plants. This treatment may enable the remaining plants to mature with the limited amount of moisture in the soil. Paradoxically, if the crop seems to be too thin in the spring, harrowing may also be of service. In such a case the teeth should be slanted backwards and the harrowing done simply for the purpose of stirring the soil without injury to the plant, to conserve the moisture stored in the soil and to accelerate the formation of nitrates.—The conserved moisture and added fertility will strengthen the growth and diminish the water requirements of the plants, and thus yield a larger crop. The iron-tooth harrow is a very useful implement on the dry-farm when the crops are young. After the plants are up so high that the harrow cannot be used on them no special care need be given them, unless indeed they are cultivated crops like corn or potatoes which, of course, as explained in previous chapters, should receive continual cultivation.

Harvesting

The methods of harvesting crops on dry-farms are practically those for farms in humid districts. The one great exception may be the use of the header on the grain farms of the dry-farm sections. The header has now become well-nigh general in its use. Instead of cutting and binding the grain, as in the old method, the heads are simply cut off and piled in large stacks which later are threshed. The high straw which remains is plowed under in the fall and helps to supply the soil with organic matter. The maintenance of dry-farms for over a generation without the addition of manures has been made possible by the organic matter added to the soil in the decay of the high vigorous straw remaining after the header. In fact, the changes occurring in the soil in connection with the decaying of the header stubble appear to have actually increased the available fertility. Hundreds of Utah dry wheat farms during the last ten or twelve years have increased in fertility, or at least in productive power, due undoubtedly to the introduction of the header system of harvesting. This system of harvesting also makes the practice of fallowing much more effective, for it helps maintain the organic matter which is drawn upon by the fallow seasons. The header should be used wherever practicable. The fear has been expressed that the high header straw plowed under will make the soil so loose as to render proper sowing difficult and also, because of the easy circulation of air in the upper soil layers, cause a large loss of soil-moisture. This fear has been found to be groundless, for wherever the header straw has been plowed under; especially in connection with fallowing, the soil has been benefited.

Rapidity and economy in harvesting are vital factors in dry-farming, and new devices are constantly being offered to expedite the work. Of recent years the combined harvester and thresher has come into general use. It is a large header combined with an ordinary threshing machine. The grain is headed and threshed in one operation and the sacks dropped along the path of the machine. The straw is scattered over the field where it belongs.

All in all, the question of sowing, care of crop, and harvesting may be answered by the methods that have been so well developed in countries of abundant rainfall, except as new methods may be required to offset the deficiency in the rainfall which is the determining condition of dry-farming.



CHAPTER XII

CROPS FOR DRY-FARMING



The work of the dry-farmer is only half done when the soil has been properly prepared, by deep plowing, cultivation, fallowing, for the planting of the crop. The choice of the crop, its proper seeding, and its correct care and harvesting are as important as rational soil treatment in the successful pursuit of dry-farming. It is true that in general the kinds of crops ordinarily cultivated in humid regions are grown also on arid lands, but varieties especially adapted to the prevailing dry-farm conditions must be used if any certainty of harvest is desired. Plants possess a marvelous power of adaptation to environment, and this power becomes stronger as successive generations of plants are grown under the given conditions. Thus, plants which have been grown for long periods of time in countries of abundant rainfall and characteristic humid climate and soil yield well under such conditions, but usually suffer and die or at best yield scantily if planted in hot rainless countries with deep soils. Yet, such plants, if grown year after year under arid conditions, become accustomed to warmth and dryness and in time will yield perhaps nearly as well or it may be better in their new surroundings. The dry-farmer who looks for large harvests must use every care to secure varieties of crops that through generations of breeding have become adapted to the conditions prevailing on his farm. Home-grown seeds, if grown properly, are therefore of the highest value. In fact, in the districts where dry-farming has been practiced longest the best yielding varieties are, with very few exceptions, those that have been grown for many successive years on the same lands. The comparative newness of the attempts to produce profitable crops in the present dry-farming territory and the consequent absence of home-grown seed has rendered it wise to explore other regions of the world, with similar climatic conditions, but long inhabited, for suitable crop varieties. The United States Department of Agriculture has accomplished much good work in this direction. The breeding of new varieties by scientific methods is also important, though really valuable results cannot be expected for many years to come. When results do come from breeding experiments, they will probably be of the greatest value to the dry-farmer. Meanwhile, it must be acknowledged that at the present, our knowledge of dry-farm crops is extremely limited. Every year will probably bring new additions to the list and great improvements of the crops and varieties now recommended. The progressive dry-farmer should therefore keep in close touch with state and government workers concerning the best varieties to use.

Moreover, while the various sections of the dry-farming territory are alike in receiving a small amount of rainfall, they are widely different in other conditions affecting plant growth, such as soils, winds, average temperature, and character and severity of the winters. Until trials have been made in all these varying localities, it is not safe to make unqualified recommendations of any crop or crop variety. At the present we can only say that for dry-farm purposes we must have plants that will produce the maximum quantity of dry matter with the minimum quantity of water; and that their periods of growth must be the shortest possible. However, enough work has been done to establish some general rules for the guidance of the dry-farmer in the selection of crops. Undoubtedly, we have as yet had only a glimpse of the vast crop possibilities of the dry-farming territory in the United States, as well as in other countries.

Wheat

Wheat is the leading dry-farm crop. Every prospect indicates that it will retain its preminence. Not only is it the most generally used cereal, but the world is rapidly learning to depend more and more upon the dry-farming areas of the world for wheat production. In the arid and semiarid regions it is now a commonly accepted doctrine that upon the expensive irrigated lands should be grown fruits, vegetables, sugar beets, and other intensive crops, while wheat, corn, and other grains and even much of the forage should be grown as extensive crops upon the non-irrigated or dry-farm lands. It is to be hoped that the time is near at hand when it will be a rarity to see grain grown upon irrigated soil, providing the climatic conditions permit the raising of more extensive crops.

In view of the present and future greatness of the wheat crop on semiarid lands, it is very important to secure the varieties that will best meet the varying dry-farm conditions. Much has been done to this end, but more needs to be done. Our knowledge of the best wheats is still fragmentary. This is even more true of other dry-farm crops. According to Jardine, the dry-farm wheats grown at present in the United States may be classificd as follows:—

I. Hard spring wheats: (a) Common (b) Durum

II. Winter wheats: (a) Hard wheats (Crimean) (b) Semihard wheats (Intermountain) (c) Soft wheats (Pactfic)

The common varieties of hard spring wheats are grown principally in districts where winter wheats have not as yet been successful; that is, in the Dakotas, northwestern Nebraska, and other localities with long winters and periods of alternate thawing and severe freezing. The superior value of winter wheat has been so clearly demonstrated that attempts are being made to develop in every locality winter wheats that can endure the prevailing climatic conditions. Spring wheats are also grown in a scattering way and in small quantities over the whole dry-farm territory. The two most valuable varieties of the common hard spring wheat are Blue Stem and Red Fife, both well-established varieties of excellent milling qualities, grown in immense quantities in the Northeastern corner of the dry-farm territory of the United States and commanding the best prices on the markets of the world. It is notable that Red Fife originated in Russia, the country which has given us so many good dry-farm crops.

Previous Part     1  2  3  4  5     Next Part
Home - Random Browse