A Critique of the Theory of Evolution
by Thomas Hunt Morgan
Previous Part     1  2
Home - Random Browse

In the fourth figure (d) the mutant called dichaete is shown. It is characterized by the absence of two of the bristles on the thorax. Other bristles may also be absent, but not so constantly as the two just mentioned. Another effect of the same factor is the spread-out condition of the wings. The very dark eye color in this figure may be taken to indicate the presence of another factor, "sepia", which causes the eyes to assume a brown color that becomes black with age. Most of the other mutations in eye color that have occurred tend to give a lighter color: this one, which is also recessive, makes the eye darker.

In the fifth figure (e) the color of the darkest fly is due to a factor called ebony, which is an allelomorph of sooty.

In the sixth figure (f) the wings are beaded, i.e., the margin is defective at intervals, giving a beaded-like outline to the wings. This condition is very variable and much affected by other factors that influence the shape of the wings. The lighter eye color of the drawing may be taken to represent pink.

In the seventh figure (g) the wings are curled up over the back. This is a recessive character.

Group IV

Only two mutants have been obtained that do not belong to any of the preceding groups; these are put together in Group IV. It has been shown that they are linked to each other and the linkage is so close that it has thus far been impossible to obtain the dominant recessive. One of these mutants, called "eyeless" (fig. 56, a, a^1), is variable—the eyes are often entirely absent or represented by one or more groups of ommatidia. The outline of the original eye, so to speak, is strongly marked out and its area might be called a rudimentary organ, if such a statement has any meaning here.

The other figure (b) represents "bent", so called from the shape of the wings. This mutant is likewise very variable, often indistinguishable from the wild type, yet when well developed strikingly different from any other mutant.

This brief account of a few of the mutant races that can be most easily represented by uncolored figures will serve to show how all parts of the body may change, some of the changes being so slight that they would be overlooked except by an expert, others so great that in the character affected the flies depart far from the original species.

It is important to note that mutations in the first chromosome are not limited to any part of the body nor do they affect more frequently a particular part. The same statement holds equally for all of the other chromosomes. In fact, since each factor may affect visibly several parts of the body at the same time there are no grounds for expecting any special relation between a given chromosome and special regions of the body. It can not too insistently be urged that when we say a character is the product of a particular factor we mean no more than that it is the most conspicuous effect of the factor.

If, then, as these and other results to be described point to the chromosomes as the bearers of the Mendelian factors, and if, as will be shown presently, these factors have a definite location in the chromosomes it is clear that the location of the factors in the chromosomes bears no spatial relation to the location of the parts of the body to each other.


The Evidence from Sex Linked Inheritance

When we follow the history of pairs of chromosomes we find that their distribution in successive generations is paralleled by the inheritance of Mendelian characters. This is best shown in the sex chromosomes (fig. 57). In the female there are two of these chromosomes that we call the X chromosomes; in the male there are also two but one differs from those of the female in its shape, and in the fact that it carries none of the normal allelomorphs of the mutant factors. It is called the Y chromosome.

The course followed by the sex chromosomes and that by the characters in the case of sex linked inheritance are shown in the next diagram of Drosophila illustrating a cross between a white eyed male and a red eyed female.

The first of these represents a cross between a white eyed male and a red eyed female (fig. 58, top row). The X chromosome in the male is represented by an open bar, the Y chromosome is bent. In the female the two X chromosomes are black. Each egg of such a female will contain one "black" X after the polar bodies have been thrown off. In the male there will be two classes of sperm—the female-producing, carrying the (open) X, and the male-producing, carrying the Y chromosome. Any egg fertilized by an X bearing sperm will produce a female that will have red eyes because the X (black) chromosome it gets from the mother carries the dominant factor for red. Any egg fertilized by a Y-bearing sperm will produce a male that will also have red eyes because he gets his (black) X chromosome from his mother.

When, then, these two F_1 flies (second row) are inbred the following combinations are expected. Each egg will contain a black X (red eye producing) or a white X (white eye producing) after the polar bodies have been extruded. The male will produce two kinds of sperms, of which the female producing will contain a black X (red eye producing). Since any egg may by chance be fertilized by any sperm there will result the four classes of individuals shown on the bottom row of the diagram. All the females will have red eyes, because irrespective of the two kinds of eggs involved all the female-producing sperm carry a black X. Half of the males have red eyes because half of the eggs have had each a red-producing X chromosome. The other half of the males have white eyes, because the other half of the eggs had each a white-producing X chromosome. Other evidence has shown that the Y chromosome of the male is indifferent, so far as these Mendelian factors are concerned.

The reciprocal experiment is illustrated in figure 59. A white eyed female is mated to a red eyed male (top row). All the mature eggs of such a female contain one white-producing X chromosome represented by the open bar in the diagram. The red eyed male contains female-producing X-bearing sperm that carry the factor for red eye color, and male-producing Y chromosomes. Any egg fertilized by an X-bearing sperm will become a red eyed female because the X chromosome that comes from the father carries the dominant factor for red eye color. Any egg fertilized by a Y-bearing sperm will become a male with white eyes because the only X chromosome that the male contains comes from his mother and is white producing.

When these two F_1 flies are inbred (middle row) the following combinations are expected. Half the eggs will contain each a white producing X chromosome and half red producing. The female-producing sperms will each contain a white X and the male-producing sperms will each contain an indifferent Y chromosome. Chance meetings of egg and sperm will give the four F_2 classes (bottom row). These consist of white eyed and red eyed females and white eyed and red eyed males. The ratio here is 1:1 and not three to one (3:1) as in other Mendelian cases. But Mendel's law of segregation is not transgressed, as the preceding analysis has shown; for, the chromosomes have followed strictly the course laid down on Mendel's principle for the distribution of factors. The peculiar result in this case is due to the fact that the F_1 male gets his single factor for eye color from his mother only and it is linked to or contained in a body (the X chromosome) that is involved in producing the females, while the mate of this body—the Y chromosome—is indifferent with regard to these factors, yet active as a mate to X in synapsis.

In man there are several characters that show exactly this same kind of inheritance. Color blindness, or at least certain kinds of color blindness, appear to follow the same scheme. A color blind father transmits through his daughters his peculiarity to half of his grandsons, but to none of his grand-daughters (fig. 38A). The result is the same as in the case of the white eyed male of Drosophila. Color blind women are rather unusual, which is expected from the method of inheritance of this character, but in the few known cases where such color blind women have married normal husbands the sons have inherited the peculiarity from the mother (fig. 38B). Here again the result is the same as for the similar combination in Drosophila.

In man the sex formula appears to be XX for the female and XO for the male (fig. 60), and since the relation is essentially the same as that in Drosophila the chromosome explanation is the same. According to von Winiwarter there are 48 chromosomes in the female and 47 in the male (fig. 61). After the extrusion of the polar bodies there are 24 chromosomes in the egg. In the male at one of the two maturation divisions the X chromosome passes to one pole undivided (fig. 61, C). In consequence there are two classes of sperms in man; female producing containing 24 chromosomes, and male producing containing 23 chromosomes. If the factor for color blindness is carried by the X chromosome its inheritance in man works out on the same chromosome scheme and in the same way as does white eye color (or any other sex linked character) in the fly, for the O sperm in man is equivalent to the Y sperm in the fly.

In these cases we have been dealing with a single pair of characters. Let us now take a case where two pairs of sex linked characters enter the cross at the same time, and preferably a case where the two recessives enter the cross from the same parent.

If a female with white eyes and yellow wings is crossed to a wild male with red eyes and gray wings (fig. 62), the sons are yellow and have white eyes and the daughters are gray and have red eyes. If two F_1 flies are mated they will produce the following classes.

Yellow Gray Yellow Gray White Red Red White - 99.% 1.%

Not only have the two grandparental combinations reappeared, but in addition two new combinations, viz., grey white and yellow red. The two original combinations far exceed in numbers the new or exchange combinations. If we follow the history of the X chromosomes we discover that the larger classes of grandchildren appear in accord with the way in which the X chromosomes are transmitted from one generation to the next.

The smaller classes of grandchildren, the exchange combinations or cross-overs, as we call them, can be explained by the assumption that at some stage in their history an interchange of parts has taken place between the chromosomes. This is indicated in the diagrams.

The most important fact brought out by the experiment is that the factors that went in together tend to stick together. It makes no difference in what combination the members of the two pairs of characters enter, they tend to remain in that combination.

If one admits that the sex chromosomes carry these factors for the sex-linked characters—and the evidence is certainly very strong in favor of this view—it follows necessarily from these facts that at some time in their history there has been an interchange between the two sex chromosomes in the female.

There are several stages in the conjugation of the chromosomes at which such an interchange between the members of a pair might occur. There is further a small amount of direct evidence, unfortunately very meagre at present, showing that an interchange does actually occur.

At the ripening period of the germ cell the members of each pair of chromosomes come together (fig. 49, e). In several forms they have been described as meeting at one end and then progressively coming to lie side by side as shown in fig. 63, e, f, g, h, i. At the end of the process they appear to have completely united along their length (fig. 63, j, k, l). It is always a maternal and a paternal chromosome that meet in this way and always two of the same kind. It has been observed that as the members of a pair come together they occasionally twist around each other (fig. 63, g, l, and 64, and 65). In consequence a part of one chromosome comes to be now on one side and now on the other side of its mate.

When the chromosomes separate at the next division of the germ cell the part on one side passes to one pole, the part on the other to the opposite pole, (figs. 64 and 65). Whenever the chromosomes do not untwist at this time there must result an interchange of pieces where they were crossed over each other.

Janssens has found at the time of separation evidence in favor of the view that some such interchange probably takes place.

We find this same process of interchange of characters taking place in each of the other three groups of Drosophila. An example will show this for the Group II.

If a black vestigial male is crossed to a gray long-winged female (fig. 66) the offspring are gray long. If an F_1 female is back-crossed to a black vestigial male the following kinds of flies are produced:

Black Gray Black Gray vestigial long long vestigial - - 83% 17%

The combinations that entered are more common in the F_2 generations than the cross-over classes, showing that there is linkage of the factors that entered together.

Another curious fact is brought out if instead of back-crossing the F1 female we back-cross the F1 male to a black vestigial female. Their offspring are now of only two kinds, black vestigial and gray long. This means that in the male there is no crossing-over or interchange of pieces. This relation holds not only for the Group II but for all the other groups as well.

Why interchange takes place in the female of Drosophila and not in the male we do not know at present. We might surmise that when in the male the members of a pair come together they do not twist around each other, hence no crossing-over results.

Crossing-over took place between white and yellow only once in a hundred times. Other characters show different values, but the same value under the same conditions is obtained from the same pair of characters.

If we assume that the nearer together the factors lie in the chromosome the less likely is a twist to occur between them, and conversely the farther apart they lie the more likely is a twist to occur between them, we can understand how the linkage is different for different pairs of factors.

On this basis we have made out chromosomal maps for each chromosome (fig. 67). The diagram indicates those loci that have been most accurately placed.

The Evidence from Interference

There is a considerable body of information that we have obtained that corroborates the location of the factors in the chromosome. This evidence is too technical to take up in any detail, but there is one result that is so important that I must attempt to explain it. If, as I assume, crossing over is brought about by twisting of the chromosomes, and if owing to the material of the chromosomes there is a most frequent distance of internode, then, when crossing over between nodes takes place at same level at a-b in figure 68, the region on each side of that point, a to A and b to B, should be protected, so to speak, from further crossing over. This in fact we have found to be the case. No other explanation so far proposed will account for this extraordinary relation.

What advantage, may be asked, is there in obtaining numerical data of this kind? It is this:—whenever a new character appears we need only determine in which of the four groups it lies and its distance from two members within that group. With this information we can predict with a high degree of probability what results it will give with any other member of any group. Thus we can do on paper what would require many months of labor by making the actual experiment. In a word we can predict what will happen in a situation where prediction is impossible without this numerical information.

The Evidence from Non-Disjunction

In the course of the work on Drosophila exceptions appeared in one strain where certain individuals did not conform to the scheme of sex linked inheritance. For a moment the hypothesis seemed to fail, but a careful examination led to the suspicion that in this strain something had happened to the sex chromosomes. It was seen that if in some way the X chromosomes failed to disjoin in certain eggs, the exceptions could be explained. The analysis led to the suggestion that if the Y chromosome had got into the female line the results would be accounted for, since its presence there would be expected to cause this peculiar non-disjunction of the X chromosomes.

That this was the explanation was shown when the material was examined. The females that gave these results were found by Bridges to have two X's and a Y chromosome.

The normal chromosome group of the female is shown in figure 52 and the chromosome group of one of the exceptional females is shown in figure 69. In a female of this kind there are three sex chromosomes X X Y which are homologous in the sense that in normal individuals the two present are mates and separate at the reduction division. If in the X X Y individual X and X conjugate and separate at reduction and the unmated Y is free to move to either pole of the spindle, two kinds of mature eggs will result, viz., X and XY. If, on the other hand, X and Y conjugate and separate at reduction and the remaining X is free to go to either pole, four kinds of eggs will result—XY—X—XX—Y. As a total result four kinds of eggs are expected: viz. many XY and X eggs and a few XX and Y eggs.

These four kinds of eggs may be fertilized either by female-producing sperms or male-producing sperms, as indicated in the diagram (fig. 70).

If such an XXY female carried white bearing Xs (open X in the figures), and the male carried a red bearing X (black X in the figures) it will be seen that there should result an exceptional class of sons that are red, and an exceptional class of daughters that are white. Tests of these exceptions show that they behave subsequently in heredity as their composition requires. Other tests may also be made of the other classes of offspring. Bridges has shown that they fulfill all the requirements predicted. Thus a result that seemed in contradiction with the chromosome hypothesis has turned out to give a brilliant confirmation of that theory both genetically and cytologically.


In passing I invite your attention to a speculation based on our maps of the chromosomes—a speculation which I must insist does not pretend to be more than a guess but has at least the interest of being the first guess that we have ever been in position to make as to how many factors go towards the makeup of the germ plasm.

We have found practically no factors less than .04 of a unit apart. If our map includes the entire length of the chromosomes and if we assume factors are uniformly distributed along the chromosome at distances equal to the shortest distance yet observed, viz. .04, then we can calculate roughly how many hereditary factors there are in Drosophila. The calculation gives about 7500 factors. The reader should be cautioned against accepting the above assumptions as strictly true, for crossing-over values are known to differ according to different environmental conditions (as shown by Bridges for age), and to differ even in different parts of the chromosome as a result of the presence of specific genetic factors (as shown by Sturtevant). Since all the chromosomes except the X chromosomes are double we must double our estimate to give the total number of factors, but the half number is the number of the different kinds of factors of Drosophila.


I have passed in review a long series of researches as to the nature of the hereditary material. We have in consequence of this work arrived within sight of a result that seemed a few years ago far beyond our reach. The mechanism of heredity has, I think, been discovered—discovered not by a flash of intuition but as the result of patient and careful study of the evidence itself.

With the discovery of this mechanism I venture the opinion that the problem of heredity has been solved. We know how the factors carried by the parents are sorted out to the germ cells. The explanation does not pretend to state how factors arise or how they influence the development of the embryo. But these have never been an integral part of the doctrine of heredity. The problems which they present must be worked out in their own field. So, I repeat, the mechanism of the chromosomes offers a satisfactory solution of the traditional problem of heredity.

* * * * *



Darwin's Theory of Natural Selection still holds today first place in every discussion of evolution, and for this very reason the theory calls for careful scrutiny; for it is not difficult to show that the expression "natural selection" is to many men a metaphor that carries many meanings, and sometimes different meanings to different men. While I heartily agree with my fellow biologists in ascribing to Darwin himself, and to his work, the first place in biological philosophy, yet recognition of this claim should not deter us from a careful analysis of the situation in the light of work that has been done since Darwin's time.


In his great book on the Origin of Species, Darwin tried to do two things: first, to show that the evidence bearing on evolution makes that explanation probable. No such great body of evidence had ever been brought together before, and it wrought, as we all know, a revolution in our modes of thinking.

Darwin also set himself the task of showing how evolution might have taken place. He pointed to the influence of the environment, to the effects of use and disuse, and to natural selection. It is to the last theory that his name is especially attached. He appealed to a fact familiar to everyone, that no two individuals are identical and that some of the differences that they show are inherited. He argued that those individuals that are best suited to their environment are the most probable ones to survive and to leave most offspring. In consequence their descendants should in time replace through competition the less well-adapted individuals of the species. This is the process Darwin called natural selection, and Spencer the survival of the fittest.

Stated in these general terms there is nothing in the theory to which anyone is likely to take exception. But let us examine the argument more critically.

If we measure, or weigh, or classify any character shown by the individuals of a population, we find differences. We recognize that some of the differences are due to the varied experiences that the individuals have encountered in the course of their lives, i.e. to their environment, but we also recognize that some of the differences may be due to individuals having different inheritances—different germ plasms. Some familiar examples will help to bring home this relation.

If the leaves of a tree are arranged according to size (fig. 71), we find a continuous series, but there are more leaves of medium size than extremes. If a lot of beans be sorted out according to their weights, and those between certain weights put into cylinders, the cylinders, when arranged according to the size of the beans, will appear as shown in figure 72. An imaginary line running over the tops of the piles will give a curve (fig. 73) that corresponds to the curve of probability (fig. 74).

If we stand men in lines according to their height (fig. 75) we get a similar arrangement.

The differences in size shown by the individual beans or by the individual men are due in part to heredity, in part to the environment in which they have developed. This is a familiar fact of almost every-day observation. It is well shown in the following example. In figure 76 the two boys and the two varieties of corn, which they are holding, differ in height. The pedigrees of the boys (fig. 77) make it probable that their height is largely inherited and the two races of corn are known to belong to a tall and a short race respectively. Here, then, the chief effect or difference is due to heredity. On the other hand, if individuals of the same race develop in a favorable environment the result is different from the development in an unfavorable environment, as shown in figure 78. Here to the right the corn is crowded and in consequence dwarfed, while to the left the same kind of corn has had more room to develop and is taller.

Darwin knew that if selection of particular kinds of individuals of a population takes place the next generation is affected. If the taller men of a community are selected the average of their offspring will be taller than the average of the former population. If selection for tallness again takes place, still taller men will on the average arise. If, amongst these, selection again makes a choice the process would, he thought, continue (fig. 79).

We now recognize that this statement contains an important truth, but we have found that it contains only a part of the truth. Any one who repeats for himself this kind of selection experiment will find that while his average class will often change in the direction of his selection, the process slows down as a rule rather suddenly (fig. 80). He finds, moreover, that the limits of variability are not necessarily transcended as the process continues even although the average may for a while be increased. More tall men may be produced by selection of this kind, but the tallest men are not necessarily any taller than the tallest in the original population.

Selection, then, has not produced anything new, but only more of certain kinds of individuals. Evolution, however, means producing more new things, not more of what already exists.

Darwin seems to have thought that the range of variation shown by the offspring of a given individual about that type of individual would be as wide as the range shown by the original population (fig. 79), but Galton's work has made it clear that this is not the case in a general or mixed population. If the offspring of individuals continued to show, as Darwin seems to have thought, as wide a range on each side of their parents' size, so to speak, as did the original population, then it would follow that selection could slide successive generations along in the direction of selection.

Darwin himself was extraordinarily careful, however, in the statements he made in this connection and it is rather by implication than by actual reference that one can ascribe this meaning to his views. His contemporaries and many of his followers, however, appear to have accepted this sliding scale interpretation as the cardinal doctrine of evolution. If this is doubted or my statement is challenged then one must explain why de Vries' mutation theory met with so little enthusiasm amongst the older group of zoologists and botanists; and one must explain why Johannsen's splendid work met with such bitter opposition from the English school—the biometricians—who amongst the post-Darwinian school are assumed to be the lineal descendants of Darwin.

And in this connection we should not forget that just this sort of process was supposed to take place in the inheritance of use and disuse. What is gained in one generation forms the basis for further gains in the next generation. Now, Darwin not only believed that acquired characters are inherited but turned more and more to this explanation in his later writings. Let us, however, not make too much of the matter; for it is much less important to find out whether Darwin's ideas were vague, than it is to make sure that our own ideas are clear.

If I have made several statements here that appear dogmatic let me now attempt to justify them, or at least give the evidence which seems to me to make them probable.

The work of the Danish botanist, Johannsen, has given us the most carefully analyzed case of selection that has ever been obtained. There are, moreover, special reasons why the material that he used is better suited to give definite information than any other so far studied. Johannsen worked with the common bean, weighing the seeds or else measuring them. These beans if taken from many plants at random give the typical curve of probability (fig. 74). The plant multiplies by self-fertilization. Taking advantage of this fact Johannsen kept the seeds of each plant separate from the others, and raised from them a new generation. When curves were made from these new groups it was found that some of them had different modes from that of the original general population (fig. 81 A-E, bottom group). They are shown in the upper groups (A, B, C, D, E). But do not understand me to say that the offspring of each bean gave a different mode.

On the contrary, some of the lines would be the same.

The result means that the general population is made up of definite kinds of individuals that may have been sorted out.

That his conclusion is correct is shown by rearing a new generation from any plant or indeed from several plants of any one of these lines. Each line repeats the same modal class. There is no further breaking up into groups. Within the line it does not matter at all whether one chooses a big bean or a little one—they will give the same result. In a word, the germ plasm in each of these lines is pure, or homozygous, as we say. The differences that we find between the weights (or sizes) of the individual beans are due to external conditions to which they have been subjected.

In a word, Johannsen's work shows that the frequency distribution of a pure line is due to factors that are extrinsic to the germ plasm. It does not matter then which individuals in a pure line are used to breed from, for they all carry the same germ plasm.

We can now understand more clearly how selection acting on a general population brings about results in the direction of selection.

An individual is picked out from the population in order to get a particular kind of germ plasm. Although the different classes of individuals may overlap, so that one can not always judge an individual from its appearance, nevertheless on the whole chance favors the picking out of the kind of germ plasm sought.

In species with separate sexes there is the further difficulty that two individuals must be chosen for each mating, and superficial examination of them does not insure that they belong to the same group—their germ plasm cannot be inspected. Hence selection of biparental forms is a precarious process, now going forward, now backwards, now standing still. In time, however, the process forward is almost certain to take place if the selection is from a heterogeneous population. Johannsen's work was simplified because he started with pure lines. In fact, had he not done so his work would not have been essentially different from that of any selection experiment of a pure race of animals or plants. Whether Johannsen realized the importance of the condition or not is uncertain—curiously he laid no emphasis on it in the first edition of his "Elemente der exakten Erblichkeitslehre".

It has since been pointed out by Jennings and by Pearl that a race that reproduces by self-fertilization as does this bean, automatically becomes pure in all of the factors that make up its germ plasm. Since self-fertilization is the normal process in this bean the purity of the germ plasm already existed when Johannsen began to experiment.


If then selection does not bring about transgressive variation in a general population, how can selection produce anything new? If it can not produce anything new, is there any other way in which selection becomes an agent in evolution?

We can get some light on this question if we turn to what man has done with his domesticated animals and plants. Through selection, i.e., artificial selection, man has undoubtedly brought about changes as remarkable as any shown by wild animals and plants. We know, moreover, a good deal about how these changes have been wrought.

(1) By crossing different wild species or by crossing wild with races already domesticated new combinations have been made. Parts of one individual have been combined with parts of others, creating new combinations. It is possible even that characters that are entirely new may be produced by the interaction of factors brought into recombination.

(2) New characters appear from time to time in domesticated and in wild species. These, like the mutants in Drosophila, are fully equipped at the start. Since they breed true and follow Mendel's laws it is possible to combine them with characters of the wild type or with those of other mutant races.

Amongst the new mutant factors there may be some whose chief effect is on the character that the breeder is already selecting. Such a modification will be likely to attract attention. Superficially it may appear that the factor for the original character has varied, while the truth may be that another factor has appeared that has modified a character already present. In fact, many or all Mendelian factors that affect the same organ may be said to be modifiers of each other's effects. Thus the factor for vermilion causes the eye to be one color, and the factor for eosin another color, while eosin vermilion is different from both. Eosin may be said to be a modifier of vermilion or vermilion of eosin. In general, however, it is convenient to use the term "modifier" for cases in which the factor causes a detectable change in a character already present or conspicuous.

One of the most interesting, and at the same time most treacherous, kinds of modifying factors is that which produces an effect only when some other factor is present. Thus Bridges has shown that there is a factor called "cream" that does not affect the red color of the eye of the wild fly, yet makes "eosin" much paler (fig. 82). Another factor "whiting" which produces no effect on red makes eosin entirely white. Since cream or whiting may be carried by red eyed flies without their presence being seen until eosin is used, the experimenter must be continually on the lookout for such factors which may lead to erroneous conclusions unless detected. As yet breeders have not realized the important role that modifiers have played in their results, but there are indications at least that the heaping up of modifying factors has been one of the ways in which highly specialized domesticated animals have been produced. Selection has accomplished this result not by changing factors, but by picking up modifying factors. The demonstration of the presence of these factors has already been made in some cases. Their study promises to be one of the most instructive fields for further work bearing on the selection hypothesis.

In addition to these well recognized methods by which artificial selection has produced new things we come now to a question that is the very crux of the selection theory today. Our whole conception of selection turns on the answer that we give to this matter and if I appear insistent and go into some detail it is because I think that the matter is worth very careful consideration.


As we have seen, the variation that we find from individual to individual is due in part to the environment; this can generally be demonstrated. Other differences in an ordinary population are recognized as due to different genetic (hereditary) combinations. No one will dispute this statement. But is all the variability accounted for in these two ways? May not a factor itself fluctuate? Is it not a priori probable that factors do fluctuate? Why, in a word, should we regard factors as inviolate when we see that everything else in organisms is more or less in amount? I do not know of any a priori reason why a factor may not fluctuate, unless it is, as I like to think, a chemical molecule. We are, however, dealing here not with generalities but with evidence, and there are three known methods by means of which it has been shown that variability, other than environmental or recombinational, is not due to variability in a factor, nor to various "potencies" possessed by the same factors.

(1) By making the stock uniform for all of its factors—chief factors and modifiers alike. Any change in such a stock produced by selection would then be due to a change in one or more of the factors themselves. Johannsen's experiment is an example of this sort.

(2) The second method is one that is capable of demonstrating that the effects of selection are actually due to modifiers. It has been worked out in our laboratory, chiefly by Muller, and used in a particular case to demonstrate that selection produced its effect by isolating modifying factors. For example, a mutant type called truncate appeared, characterized by shorter wings, usually square at the end, (fig. 83a). The wings varied from those of normal length to wings much shorter (fig. 83b). For three years the mutant stock was bred from individuals having the shorter wings until at last a stock was obtained in which some of the individuals had wings much shorter than the body. By means of linkage experiments it was shown that at least three factors were present that modified the wings. These were isolated by means of their linkage relations, and their mutual influence on the production of truncate wings was shown.

An experiment of this kind can only be carried out in a case where the groups of linked gens are known. At present Drosophila is the only animal (or plant) sufficiently well known to make this test possible, but this does not prove that the method is of no value. On the contrary it shows that any claim that factors can themselves be changed can have no finality until the claim can be tested out by means of the linkage test. For instance, bar eye (fig. 31) arose as a mutation. All our stock has descended from a single original mutant. But Zeleny has shown that selection within our stock will make the bar eye narrower or broader according to the direction of selection. It remains to be shown in this case how selection has produced its effects, and this can be done by utilizing the same process that was used in the case of truncate.

Another mutant stock called beaded (fig. 84), has been bred for five years and selected for wings showing more beading. In extreme cases the wings have been reduced to mere stumps (see stumpy, fig. 5), but the stock shows great variability. It is probable here as Dexter has shown, that a number of mutant factors that act as modifiers have been picked up in the course of the selection, and when it is recalled that during those five years over 125 new characters have appeared elsewhere it does not seem improbable that factors also have appeared that modify the wings of this stock.

(3) The third method is one that has been developed principally by East for plants; also by MacDowell for rabbits and flies. The method does not claim to prove that modifiers are present, but it shows why certain results are in harmony with that expectation and can not be accounted for on the basis that a factor has changed. Let me give an example. When a Belgian hare with large body was crossed to a common rabbit with a small body the hybrid was intermediate in size. When the hybrid was crossed back to the smaller type it produced rabbits of various sizes in apparently a continuous series. MacDowell made measurements of the range of variability in the first and in the second generations.

_Classification in relation to parents based on skull lengths and ulna lengths, to show the relative variability of two measurements and of the first generation (F_1) and the back cross (B. C.)_

CHARACTER GENERATION -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 -+ + -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ Length of{ F1 skull { B.C. 3 Length of{ F1 ulna { B.C. 1 1 2 3 1 2 4 4

same table continued

CHARACTER GENERATION 0 1 2 3 4 5 6 7 8 9 10 11 12 -+ + -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ Length of{ F1 2 2 8 5 10 7 skull { B.C. 6 4 13 18 42 32 38 34 16 16 8 4 3 Length of{ F1 1 2 1 1 1 2 2 5 3 ulna { B.C. 12 11 20 26 17 19 18 15 12 13 15 11 5

same table continued

CHARACTER GENERATION 13 14 15 16 17 18 19 20 21 22 23 24 25 -+ + -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ Length of{ F1 3 2 2 skull { B.C. 1 Length of{ F1 1 7 3 2 1 2 1 1 ulna { B.C. 2 4 2 2 1 1

He found that the variability was smaller in the first generation than in the second generation (back cross). This is what is expected if several factor-differences were involved, because the hybrids of the first generation are expected to be more uniform in factorial composition than are those in the second generation which are produced by recombination of the factors introduced through their grandparents. Excellent illustrations of the same kinds of results have been found in Indian corn. As shown in figure 85 the length of the cob in F1 is intermediate between the parent types while in F2 the range is wider and both of the original types are recovered. East states that similar relations have been found for 18 characters in corn. Emerson has recently furnished further illustrations of the same relations in the length of stalks in beans.

A similar case is shown by a cross between fantail and common pigeons (fig. 86). The latter have twelve feathers in the tail, while the selected race from which the fantails came had between 28 and 38 feathers in the tail. The F_1 offspring (forty-one individuals) showed (fig. 87) between 12 and 20 tail feathers, while in F_2 the numbers varied between 12 and 25. Here one of the grand-parental types reappears in large numbers, while the extreme of the other grand-parental type did not reappear (in the counts obtained), although the F_2 number would probably overlap the lower limits of the race of fantail grandparents had not a selected (surviving) lot been taken for the figures given in the table.

The preceding account attempts to point out how I should prefer to interpret the problem of selection in the light of the most recent work on breeding. But I would give a very incomplete account of the whole situation if I neglected to include some important work which has led some of my fellow-workers to a very different conclusion.

Castle in particular is the champion of a view based on his results with hooded rats. Starting with individuals which have a narrow black stripe down the back he selected for a narrower stripe in one direction and for a broader stripe in the other. As the diagram shows (fig. 88) Castle has succeeded in producing in one direction a race in which the dorsal stripe has disappeared and in the other direction a race in which the black has extended over the back and sides, leaving only a white mark on the belly. Neither of these extremes occurs, he believes, in the ordinary hooded race of domesticated rats. In other words no matter how many of them came under observation the extreme types of his experiment would not be found.

Castle claims that the factor for hoodedness must be a single Mendelian unit, because if hooded rats are crossed to wild gray rats with uniform coat and their offspring are inbred there are produced in F_2 three uniform rats to one hooded rat. Castle advances the hypothesis that factors—by which he means Mendelian factors—may themselves vary in much the same way as do the characters that they stand for. He argues, in so many words, that since we judge a factor by the kind of character it produces, when the character varies the factor that stands for it may have changed.

As early as 1903 Cuenot had carried out experiments with spotted mice similar to those of Castle with rats. Cuenot found that spotted crossed to uniform coat color gave in F_2 a ratio of three uniform to one spotted, yet selection of those spotted mice with more white in their coat produced mice in successive generations that had more and more white. Conversely Cuenot showed that selection of those spotted mice that had more color in their coat produced mice with more and more color and less white. Cuenot does not however bring up in this connection the question as to how selection in these spotted mice brings about its results.

Without attempting to discuss these results at the length that they deserve let me briefly state why I think Castle's evidence fails to establish his conclusion.

In the first place one of the premises may be wrong. The three to one ratio in F_2 by no means proves that all conditions of hoodedness are due to one factor. The result shows at most that one factor that gives the hooded types is a simple Mendelian factor. The changes in this type may be caused by modifying factors that can show an effect only when hoodedness is itself present. That this is not an imaginary objection but a real one is shown by an experiment that Castle himself made which furnishes the ground for the second objection.

Second. If the factor has really changed its potency, then if a very dark individual from one end of the series is crossed to a wild rat and the second generation raised we should expect that the hooded F_2 rats would all be dark like their dark grandparent. When Castle made this test he found that there were many grades of hooded rats in the F_2 progeny. They were darker, it is true, as a group than were the original hooded group at the beginning of the selection experiment, but they gave many intermediate grades. Castle attempts to explain this by the assumption that the factor made pure by selection became contaminated by its normal allelomorph in the F_1 parent, but not only does this assumption appear to beg the whole question, but it is in flat contradiction with what we have observed in hundreds of Mendelian cases where no evidence for such a contamination exists.

Later Castle crossed some of the extracted rats of average grade (3.01) from the plus series to the same wild race and got F_2 hooded rats from this cross. These F_2 hooded rats did not further approach the ordinary range but were nearer the extreme selected plus hooded rats (3.33) than were the F_2's extracted from the first cross (2.59). Castle concludes from this that multiple factors can not account for the result. As a matter of fact, Castle's evidence _as published_ does not establish his conclusion because the wild rats used in the second experiment may have carried plus modifiers. This could only be determined by suitable tests which Castle does not furnish. This is the crucial point, without which the evidence carries no conviction.

Furthermore, from Castle's point of view, these latest results would seem to increase the difficulty of interpretation of his first F_2 extracted cross, and it is now the first result that calls for explanation if one accepts his later conclusion.

These and other objections that might be taken up show, I think, that Castle's experiment with hooded rats fails entirely to establish his contention of change in potency of the germ or of contamination of factors, while on the contrary they are in entire accord with the view that he is dealing with a case of modifying factors.

Equally important are the results that Jennings has obtained with certain protozoa. Paramecium multiplies by dividing across in the middle, each half replacing its lacking part. Both the small nucleus (micronucleus) and the large nucleus (macronucleus) divide at each division of the body. Jennings found that while individuals descended from a single paramecium vary in size (fig. 89), yet the population from a large individual is the same as the population derived from a small individual. In other words, selection produces no result and the probable explanation is, of course, that the different sizes of individuals are due to the environment, while the constancy of the type is genetic. Jennings found a number of races of paramecium of different sizes living under natural conditions. The largest individual of a small race might overlap the smallest individual of other larger races (fig. 89); nevertheless each kind reproduced its particular race. The results are like those of Johannsen in a general way, but differ in that reproduction takes place in paramecium by direct division instead of through self-fertilization as in beans, and also in that the paramecia were probably not homozygous. Since, however, so far as known no "reduction" takes place in paramecium at each division, the genetic composition of parent and offspring should be the same. Whether pseudo-parthenogenesis that Woodruff and Erdmann have found occurring in paramecium at intervals involves a redistribution of the hereditary factors is not clear. Jennings's evidence seems incompatible with such a view.

More recently one of Jennings's students, Middleton, has made a careful series of selection experiments with Stylonychia (fig. 90) in which he selected for lines showing more rapid or slower rates of division. His observations seem to show that his selection separated two such lines that came from the same original stock. The rapidity of the effects of selection seems to preclude the explanation that pseudo-parthenogenesis has complicated the results. Nevertheless, the results are of such a kind as to suggest that they were due to selection of vegetative (somatic) differences and that no genetic change of factors was involved, for his conclusion that the rapidity with which the effects gained by long selection might be suddenly reversed when selection was reversed is hardly consistent with an interpretation of the results based on changes in the "potencies" of the factors present.

Equally striking are the interesting experiments that Jennings has recently carried out with Difflugia (fig. 91). This protozoon secretes a shell about itself which has a characteristic shape, and often carries spines. The opening at one end of the shell through which the protoplasm protrudes to make the pseudopodia is surrounded by a rim having a characteristic pattern. The protoplasm contains several nuclei and in addition there is scattered material or particles called chromidia that are supposed to be chromatic in nature and related to the material of the nuclei, possibly by direct interchange.

When Difflugia divides, part of the protoplasm protrudes from the opening and a new shell is secreted about this mass which becomes a daughter individual. The behavior of the nucleus and of the chromidia at this time is obscure, but there is some evidence that their materials may be irregularly distributed between parent and offspring. If this is correct, and if in the protozoa the chromatin has the same influence that it seems to have in higher animals, the mode of reproduction in Difflugia would be expected to give little more than random sampling of the germ plasm.

Jennings was able by means of selection to get from the descendants of one original individual a number of different types that themselves bred true, except in so far as selection could affect another change in them. In this connection it is interesting to note that Leidy has published figures of Difflugia (fig. 92) that show that a great many "types" exist. If through sexual union (a process that occurs in Difflugia) the germ plasm (chromatin) of these wild types has in times past been recombined, then selection would be expected to separate certain types again, if, at division, irregular sampling of the germ plasm takes place. Until these points are settled the bearing of these important experiments of Jennings on the general problem of selection is uncertain.


The question still remains: Does selection play any role in evolution, and, if so, in what sense? Does the elimination of the unfit influence the course of evolution, except in the negative sense of leaving more room for the fit? There is something further to be said in this connection, although opinions may differ as to whether the following interpretation of the term "natural selection" is the only possible one.

If through a mutation a character appears that is neither advantageous nor disadvantageous, but indifferent, the chance that it may become established in the race is extremely small, although by good luck such a thing may occur rarely. It makes no difference whether the character in question is a dominant or a recessive one, the chance of its becoming established is exactly the same. If through a mutation a character appears that has an injurious effect, however slight this may be, it has practically no chance of becoming established.

If through a mutation a character appears that has a beneficial influence on the individual, the chance that the individual will survive is increased, not only for itself, but for all of its descendants that come to inherit this character. It is this increase in the number of individuals possessing a particular character, that might have an influence on the course of evolution. This gives a better chance for improvement by several successive steps; but not because the species is more likely to mutate again in the same direction. An imaginary example will illustrate how this happens: When elephants had trunks less than a foot long, the chance of getting trunks more than one foot long was in proportion to the length of trunks already present and to the number of individuals; but increment in trunk length is no more likely to occur from an animal having a trunk more than one foot long than from an animal with a shorter trunk.

The case is analogous to tossing pennies. At any stage in the game the chance of accumulating a hundred heads is in proportion to the number of heads already obtained, and to the number of throws still to be made. But the number of heads obtained has no influence on the number of heads that will appear in the next throw.

Owing then to this property of the germ plasm to duplicate itself in a large number of samples not only is an opportunity furnished to an advantageous variation to become extensively multiplied, but the presence of a large number of individuals of a given sort prejudices the probable future result.

The question may be raised as to whether it is desirable to call selection a creative process. There are so many supernatural and mystical implications that hang around the term creative that one can not be too careful in stating in what sense the term is to be used. If by creative is meant that something is made out of nothing, then of course there is no need for the scientist to try to answer such a question. But if by a creative process is meant that something is made out of something else, then there are two alternatives to be reckoned with.

First, if it were true that selection of an individual of a certain kind determines that new variations in the same direction occur as a consequence of the selection, then selection would certainly be creative. How this could occur might be quite unintelligible, but of course it might be claimed that the point is not whether we can explain how creation takes place, but whether we can get verifiable evidence that such a kind of thing happens. This possibility is disposed of by the fact that there is no evidence that selection determines the direction in which variation occurs.

Second, if you mean by a creative process that by picking out a certain kind of individual and multiplying its numbers a better chance is furnished that a certain end result will be obtained, such a process may be said to be creative. This is, I think, the proper use of the term creative in a mechanistic sense.


In reviewing the evidence relating to selection I have tried to handle the problem as objectively as I could.

The evidence shows clearly that the characters of wild animals and plants, as well as those of domesticated races, are inherited both in the wild and in the domesticated forms according to Mendel's Law.

The causes of the mutations that give rise to new characters we do not know, although we have no reason for supposing that they are due to other than natural processes.

Evolution has taken place by the incorporation into the race of those mutations that are beneficial to the life and reproduction of the organism. Natural selection as here defined means both the increase in the number of individuals that results after a beneficial mutation has occurred (owing to the ability of living matter to propagate) and also that this preponderance of certain kinds of individuals in a population makes some further results more probable than others. More than this, natural selection can not mean, if factors are fixed and are not changed by selection.

* * * * *


Abnormal abdomen 109 Abraxas 78-81 Allantois 17 Allelomorphs 83-84 Altenburg 112 Amnion 16-17 Andalusian fowl 45, 46 Annelids 22 Antlered wing 111 Apterous wing 11 Arc wing 111 Aristae 104

Bar eye 67, 108, 169 Bateson 18, 34, 36 Beaded wing 11, 115 Beans 147-149, 157 Belgian hare 171 Bent wing 116 Bergson 30, 31 Bildungstrieb 34 Biogenetic law 15, 18, 19, 21 Biometricians 156 Bird 21, 23 Bithorax 65, 112, 113 Black body color 111, 133 Blakeslee 152 Bridges 114, 143, 163 British Association 36 Bruenn 40 Buff eye color 109 Bufon 27

Castle 176-180 Cat 33 Cell 90, 91 Chance variations 37 Chick 16, 17, 20 Chromatin 184 Chromosome group of Drosophila 102 Chromosomes 91, 95, 96, 98, 130, 131, 132 Cleavage 21, 22, 94 Clover butterfly 62 Club wing 69, 70, 108 Colias philodice 62 Color blindness 77, 125 Comb of Drosophila 103 Combs of fowls 33, 54 Comparative anatomy 7, 8, 9, 14 Corn 150, 153, 172 Correns 41 Cosmogonies 27 Cream eye color 163, 164 Crepidula 22 Criss-cross inheritance 78 Crossing over 131-133 Cuenot 178 Curled wing 115 Curved wing 111 Curve of probability 149 Cut wing 11, 104

Dachs legs 112 Dahlgren 62 Darwin 15, 24, 28, 32, 35-37, 64, 145, 146, 152, 154-156 Dendy 188 De Vries 18, 147, 156 Dexter 170 Dichaete 114 Difflugia 184-187 Discontinuous variation 13 Disuse 31 Drosophila ampelophila 10, 12, 13, 48-50, 60, 75, 84, 85, 93, 100, 103, 119, 155, 162, 169 Drosophila repleta 76 Duplication of legs 109 Dwarf 114

East 170, 172 Ebony 50, 55, 56, 115 Egg 91, 94 Elephant 191 Elephants' skulls 188 Elephants' trunks 190 Embryology 13-23 Emerson 172 Environment 27 Eosin eye color 61, 107, 163 Erdmann 183 Evolution Creatrice 30 Evolution—three kinds of 1, 2, 4 Eye color 13 Eyeless 66, 115

Factorial theory 89 Factors of Drosophila 143 Fantails 172, 175 Fertilization 91 Fish 16, 20, 21 Flatworms 22 Fluctuations 12 Forked bristles 106 Fowl 77 Fused veins 107, 108

Galton 154 Geneticist 26 Germ-plasm 142 Geoffroy St. Hilaire 27 Giant 114 Gill-slits 20, 21, 23 Groups I, II, III, IV 100-118

Haeckel 15 Haemophilia 77 Heliotropism 106, 107 Himalyan rabbits 83 History 1, 6 Hoge 66 Horse, evolution of 6

Indian corn 172, 173 Interference 137, 138

Janssens 132 Jaunty wing 111 Jennings 161, 181-184, 186 Johannsen 156, 157, 159-161, 166, 182

Lamarck 31-34 Langshan 77 Leaves 147 Leidy 186 Lethal 105 Linkage groups 103 Lizard 23 Localization of factors 118

MacDowell 155, 170, 171 Macritherium 191 Mammal 16, 21, 23 Man 20, 77, 125, 126 Map of Chromosomes 136 Maroon eye color 114 Mendel 40, 41, 52, 89 Mendelian heredity 39 Mendel's law 41-59, 64, 124 Mendel's second law 52 Mesenchyme cells 22 Mesoderm cells 22 Metaphysician 30 Mice 33, 178 Middleton 183 Miniature wing 108 Mirabilis 42 Modifiers 163, 164, 170, 171 Molluscs 22 Mouse 83 Muller 112, 167 Mutations 35, 39, 84

Naegeli 34, 35 Natural Selection 36, 145, 146, 187-194 Nisus formativus 34 Non-disjunction 139-142 Notch wing 104-106 Nucleus 91

Origin of Species 35, 145 Orthogenesis 34

Paleontology 24-27 Papilio polytes 63 Papilio turnus 63 Paramecium 181, 182 Paratettix 81 Peach eye color 114 Pea comb 54 Pearl 161 Peas 47 Pigeons 172, 174, 175 Pink eye color 114, 115 Planarian 22 Plymouth Rock 77 Podarke 22 Polar bodies 126 Pole arms 5 Protozoa 181 Pseudo-parthenogenesis 183 Purple eye color 109 Purpose 4

Rabbits 83, 170 Rats 176-180 Reduction division 182 Reproductive cells 96 Ruby eye color 106 Rudimentary organ 116 Rudimentary wing 70, 71, 107

Sable body color 107 Science definition of 6 Segregation 41 Selenka 94 Sepia eye color 13, 114 Sex chromosomes 118 Sex linked inheritance 75, 118-130 Sexual dimorphism 62 Sheep 33 Single comb 54 Sooty body color 50, 114, 115 Speck 68, 69, 111 Spencer 145 Spermatozoon 91, 98 Stars, evolution of 6 St. Hilaire 27-30 Strap wing 110, 111 Stumpy wing 11 Sturtevant 76, 143 Stylonychia 183 Survival of the fittest 146 Systematist 85

Tails 33 Tan flies 106, 107 Tetrabelodon 191 Trefoil 111 Truncate wing 111, 112, 167, 168

Unfolding principle 34 Unio 22 Unit character 74, 75 Use 31

Variation discontinuous 13 Vermilion eye color 108, 163 Vestigial wing 11, 55, 56, 109, 133 Vital force 34

Wallace 36 Walnut comb 54 Weismann 17, 31-33 Wilson, E. B. 125 Wingless 67 Winiwarter 126 White eye color 13, 75, 119-130 Whiting eye color 163, 164 Woodruff 183

Yellow body color 108, 133 Yolk sac 16, 17

Zeleny 169

* * * * *

Corrections made to printed original.

page 104, "shown in figures 53, 54, 55, 56": '52, 53, 54, 55' in original.


Previous Part     1  2
Home - Random Browse